首页> 外文会议>International pipeline conference >PHASE FIELD MODELLING OF MICROSTRUCTURE EVOLUTION IN THE HAZ OF X80 LINEPIPE STEEL
【24h】

PHASE FIELD MODELLING OF MICROSTRUCTURE EVOLUTION IN THE HAZ OF X80 LINEPIPE STEEL

机译:X80管线钢热影响区组织演变的相场建模。

获取原文

摘要

The heat affected zone (HAZ) during welding experiences a very steep temperature gradient which results in significant microstructure gradients. Thus, model approaches on the length scale of the microstructure, i.e. the so-called mesoscale, are useful to accurately simulate microstructure evolution in the HAZ. In this study, a phase field model (PFM) is employed to simulate austenite grain growth and austenite decomposition in the HAZ of an X80 linepipe steel microalloyed with Nb and Ti. The interfacial mobilities and nucleation conditions are obtained by benchmarking the PFM with experimental data from austenite grain growth and continuous cooling transformation tests. An effective grain boundary mobility is introduced for austenite grain growth to implicitly account for dissolution of NbC. Subsequently, austenite decomposition into polygonal ferrite and bainite is considered. For this purpose the PFM is coupled with a carbon diffusion model. Ferrite nuclei are introduced at austenite grain boundaries and suitable interfacial mobilities are selected to reproduce experimental ferrite formation kinetics. Bainite nucleation occurs for a sufficiently high undercooling at available interface sites (i.e. austenite grain boundaries and/or austenite-ferrite interfaces). For simplicity, the formation of carbide-free bainite is considered and a suitable anisotropy approach is proposed for the austenite-bainite interface mobility. The model is then used to predict austenite grain growth and phase transformation in the HAZ.
机译:焊接过程中的热影响区(HAZ)会经历非常陡峭的温度梯度,这会导致明显的微观结构梯度。因此,在微观结构的长度尺度上的模型方法,即所谓的介观尺度,对于精确地模拟HAZ中的微观结构演变是有用的。在这项研究中,采用相场模型(PFM)来模拟由Nb和Ti微合金化的X80管线钢在热影响区中的奥氏体晶粒长大和奥氏体分解。界面迁移率和成核条件是通过使用奥氏体晶粒长大和连续冷却转变试验的实验数据对PFM进行基准测试而获得的。为奥氏体晶粒的生长引入了有效的晶界迁移率,隐含地解释了NbC的溶解。随后,考虑到奥氏体分解成多边形铁素体和贝氏体。为此,PFM与碳扩散模型耦合。在奥氏体晶界处引入铁素体核,并选择合适的界面迁移率以重现实验性铁素体形成动力学。在可用的界面位置(即奥氏体晶界和/或奥氏体-铁素体界面)处发生足够高的过冷而发生贝氏体形核。为简单起见,考虑了无碳化物贝氏体的形成,并提出了一种适用于奥氏体-贝氏体界面迁移率的各向异性方法。然后将该模型用于预测热影响区中的奥氏体晶粒长大和相变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号