首页> 外文会议>Spintronics symposium >Spin injection, transport, and relaxation in spin light-emitting diodes: magnetic field effects
【24h】

Spin injection, transport, and relaxation in spin light-emitting diodes: magnetic field effects

机译:自旋发光二极管中的自旋注入,传输和弛豫:磁场效应

获取原文

摘要

Efficient electrical spin injection into semiconductor based devices at room temperature is one of the most important requirements for the development of applicable spintronic devices in the near future and is thus an important and very active research field. Here we report experimental results for the electrical spin injection in spin light-emitting diodes (spin-LEDs) without external magnetic fields at room temperature. Our devices consist of a Fe/Tb multilayer spin injector with remanent out-of-plane magnetization, an MgO tunnel barrier for efficient spin injection and an InAs quantum dot light-emitting diode. Using a series of samples with different injection path lengths allows us to experimentally determine the spin relaxation during vertical transport from the spin injector to the active region at room temperature. In combination with oiir concept for remanent spin injection, we are additionally able to investigate the influence of an external magnetic field on the spin relaxation process during transport. While the spin relaxation length at room temperature without external magnetic field is determined to be 27 nm, this value almost doubles if an external magnetic field of 2 Tesla is applied in Faraday geometry. This demonstrates that the results for spin injection and spin relaxation obtained with or without magnetic field can hardly be compared. The efficiency of spin-induced effects is overestimated as long as magnetic fields are involved. Since strong magnetic fields are not acceptable in application settings, this may lead to wrong conclusions and potentially impairs proper device development.
机译:在不久的将来,在基于半导体的器件中有效的电自旋注入是在不久的将来开发适用的自旋电子器件的最重要要求之一,因此是重要而活跃的研究领域。在这里,我们报告了室温下无外部磁场的自旋发光二极管(spin-LED)中电自旋注入的实验结果。我们的设备包括具有剩余面外磁化强度的Fe / Tb多层自旋注入器,有效自旋注入的MgO隧道势垒和InAs量子点发光二极管。使用一系列具有不同注入路径长度的样品,使我们能够在室温下实验确定自旋注射器到活性区域的垂直传输过程中的自旋弛豫。结合用于剩余自旋注入的oiir概念,我们还能够研究运输过程中外部磁场对自旋弛豫过程的影响。虽然室温下没有外部磁场的自旋弛豫长度确定为27 nm,但是如果在法拉第几何中施加2 Tesla的外部磁场,则该值几乎翻倍。这证明了几乎不能比较在有或没有磁场的情况下获得的自旋注入和自旋弛豫的结果。只要涉及磁场,就高估了自旋感应效应的效率。由于强磁场在应用环境中是不可接受的,因此可能导致错误的结论,并有可能损害适当的设备开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号