首页> 外文会议>International IEEE/EMBS Conference on Neural Engineering >The effect of axon trajectory on retinal ganglion cell activation with epiretinal stimulation
【24h】

The effect of axon trajectory on retinal ganglion cell activation with epiretinal stimulation

机译:轴突轨迹对具有表闭症刺激视网膜神经节细胞活化的影响

获取原文

摘要

For epiretinal prostheses, disc electrodes stimulate retinal ganglion cells (RGCs) with electric current to create visual percepts. Prior studies have determined that the sodium channel band (SOCB), located on the RGC axon (30–50 µm from the soma), is the most sensitive site to extracellular stimulation because of its high sodium channel density. Biophysical cable models used to study RGC activation in silico often rely on simplified axon trajectories, disregarding the non-uniform paths that axons follow to the optic disc. However, since axonal activation is a critical mechanism in epiretinal stimulation, it is important to investigate variable RGC axon trajectories. In this study, we use a computational model to perform a sensitivity analysis examining how the morphometry of an RGC axon affects predictions of retinal activation. We determine that RGC cable models are sensitive to changes in the ascending axon trajectory between the soma and nerve fiber layer. On the other hand, RGC cable models are relatively robust to trajectory deviations in the plane parallel to the disc electrode's surface. Overall, our results suggest that incorporating natural variations of soma depth and nerve fiber layer entry angle could result in a more realistic model of the retina's response to epiretinal stimulation and a better understanding of elicited visual percepts.
机译:对于齿膜前肢体,盘电极刺激电流的视网膜神经节细胞(RGC)以产生视觉感知。先前的研究确定,位于RGC轴突(来自SOMA的30-50μm)上的钠通道带(SOCB)是细胞外刺激的最敏感的部位,因为其高钠通道密度。用于研究Silico中RGC激活的生物物理电缆模型通常依赖于简化的轴突轨迹,忽略了轴突跟随所述光盘的非均匀路径。然而,由于轴突激活是截止体刺激的关键机制,因此研究可变RGC轴突轨迹是重要的。在这项研究中,我们使用计算模型来执行敏感性分析,检查RGC轴突的形态学如何影响视网膜激活的预测。我们确定RGC电缆模型对SOMA和神经纤维层之间的升序轴突轨迹的变化很敏感。另一方面,RGC电缆模型对平行于盘电极表面的平面中的轨迹偏差相对稳健。总体而言,我们的结果表明,掺入Soma Depth和神经纤维层进入角度的自然变化可能导致视网膜对表闭症刺激的反应的更现实的模型,并更好地了解引发的视觉感受。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号