首页> 外文会议>International conference on environmental systems >Experimental setup and results for a simulated solar cavity receiver for thermal processing of lunar regolith
【24h】

Experimental setup and results for a simulated solar cavity receiver for thermal processing of lunar regolith

机译:用于月球巨石热处理的模拟太阳腔接收器的实验装置和结果

获取原文

摘要

Solar wind impingement deposits are very fine layer of hydrogen and nitrogen into the lunar regolith grains on the lunar surface. These solar wind implanted particles (SW1P) have been discussed as a potential resource for lunar exploration. Experimental data on Apollo samples have shown the potential to release these components by thermal desorption in the temperature range between 400°C and 1200°C. A conceptual in-situ thermal extraction experiment, thermally powered by a solar concentrator, has been proposed. This concept envisions a double walled cavity, with regolith filled into the space between the cavity walls. Concentrated solar radiation is collected in the cavity receiver, resulting in an inside-out heating. Thermal analysis performed on this concept has shown a complex interaction between material parameters, especially regolith thermal conductivity, solar irradiation from the concentrator and thermal coupling of cavity walls. Optimistic estimations have led to the conclusion that such a design could allow for small thermal gradients (delta T <100K) inside the regolith layer, although gradients cannot be completely avoided. The envisioned solar cavity receiver and its surrounding regolith processing chamber were approximated in an experimental setup through two nested cylinders. An electrical heater located in the innermost cylinder represents the solar energy input. The thermal behavior of the integrated system was tested under high-vacuum (10-5 mbar) with the JSC-1A regolith simulant, in layers of 5 and 15mm. The inner cylinder wall aperture was increased stepwise from 20°C to 250, 500, 750 and 900°C. The thermal connection between the inner and outer cylinder ('cavity') was also altered. This allowed for better understanding, model correlation and measurement of the thermal conductivity of the lunar regolith simulant JSC-1A in vacuum. Our results show extremely high thermal gradients between 250 and 500 K within the regolith, limiting the useful and possible thickness of heated regolith to very thin layers if a non-stirred bed reactor approach is used. A low gradient heating of larger amounts of regolith with this approach is not feasible. Recommendations for improved concepts using solar-thermal and electrical heating, and an updated cavity and reactor bed design are proposed based on the analytical and experimental results of this study.
机译:撞击太阳风的沉积物是非常细小的氢和氮层,进入月球表面的月球变粉粒。这些太阳风注入的粒子(SW1P)已被讨论为探月的潜在资源。阿波罗(Apollo)样品的实验数据表明,在400°C至1200°C的温度范围内,通过热脱附可以释放这些组分。提出了一种概念性的原位热提取实验,该实验由太阳能集中器进行热驱动。这个概念设想了一个双壁腔体,将粉煤灰填充到腔体壁之间的空间中。集中的太阳辐射被收集在腔体接收器中,从而导致了由内而外的加热。在此概念上进行的热分析表明,材料参数之间存在复杂的相互作用,尤其是硬石膏导热系数,聚光器发出的太阳辐射以及腔壁的热耦合。乐观估计得出的结论是,尽管无法完全避免梯度变化,但这种设计可以在重膏石层内部实现较小的热梯度(δT <100K)。设想中的太阳腔接收器及其周围的碎石处理室是通过两个嵌套圆柱体在实验装置中近似得出的。位于最里面的圆柱体中的电加热器代表太阳能输入。在高真空(10-5毫巴)下,使用JSC-1A重水硬石模拟剂在5和15mm的层中测试了集成系统的热性能。气缸内壁孔从20°C逐步增加到250、500、750和900°C。内圆柱和外圆柱之间的热连接(“腔”)也已更改。这样可以更好地理解,模型相关性以及在真空中测量月球重石模拟物JSC-1A的热导率。我们的结果显示,在硬石中250至500 K之间的极高的温度梯度,如果使用非搅拌床反应器方法,将加热的硬石的有用且可能的厚度限制为非常薄的层。用这种方法低梯度加热大量的硬石膏是不可行的。基于这项研究的分析和实验结果,提出了使用太阳热能和电加热技术改进概念的建议,以及更新的空腔和反应器床设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号