【24h】

Mappings and Meshes

机译:映射和网格

获取原文
获取外文期刊封面目录资料

摘要

In my talk I will attempt to draw some connections between complex analysis and computational geometry, particularly between conformal mappings, hyperbolic geometry, the medial axis and optimal meshing. The Riemann mapping theorem says that there is a conformal (angle preserving) map of the unit disk, D, to the interior Ω of any simple n-gon. How much work is needed to compute this map? Theorem 1: [1] We can compute the conformal map f : D → Ω to within error e in time O(n · log 1/∈ log log 1/∈). The proof uses an iteration that converges quadratically to f, but it needs a good initial guess that is close to the correct answer. The medial axis allows us to quickly construct a map Ω → D that is close to Riemann's map with precise estimates. This gives our starting point, and the time estimates in the theorem depend on time needed to compute the medial axis (linear by work of Chin, Snoeyink and Wang). Conversely, the proof of Theorem 1 uses ideas from analysis that may be of interest in CG. For example, the dome of a planar domain Ω is the surface in R_+~3 given by the upper envelope of all hemispheres whose base on R~2 is a medial axis disk of Ω. Domes arise in the study of 3-manifolds, and a fundamental result of Dennis Sullivan about convex sets in hyperbolic 3-space lies at the heart of Theorem 1. The proof of Theorem 1 also introduces the thick-thin decomposition of a polygon, inspired by the thick-thin decomposition of a hyperbolic manifold. The thin parts correspond to "long, narrow" pieces of the polygon (but not in the obvious way; the precise definition uses a conformal invariant called extremal length). This decomposition plays in important role in proving: Theorem 2: [2] Any simple n-gon has a O(n) quadiilateml mesh with all angles < 120° and all new angles > 60°. The sharp upper bound is due to Bern and Eppstein; the lower bound is the novel part here. The result is also true for PSLGs with at most n edges and vertices, although simple examples show the O(n) must be replaced by O(n~2): Theorem 3: [4] Every PSLG has an O(n~2) quadrilateral mesh with all angles < 120° and all new angles > 60°. Only O(n/∈) angles satisfy |0 - 90° | > ∈, for any ∈ > 0. Adding diagonals to the quadrilaterals gives a triangulation with all angles < 120°, improving results of S. Mitchell (157.5°) and Tan (132°). Applying thick-thin decompositions directly to triangulations gives an even better result: for any ∈ > 0. a PSLG has a O(n~2) triangulation with angles < 90° + ∈ (but the constant blows up as c ↘ 0). For e — 0, a more intricate construction shows: Theorem 4: [3] Every PSLG has a O{n~(2.5)) nonobtuse triangulation. No polynomial bound was previously known, and I strongly suspect n~(2.5) can be improved to n~2 (known sharp). The triangles may be taken to be either all acute or all right. Some consequences of Theorem 4 and its proof include 1. Every PSLG has a O(n~(2.5)) conforming Delaunay triangulation (improves O(n~3) by Edelsbrunner and Tan). 2. Any triangulation of an n-gon has a O(n~2) nonobtuse refinement (improves O(n~4) by Bern and Eppstein). Most of the algorithms I will describe seem too complex to implement (at least for me), and are strongly 2-dimensional, but I hope the audience will have some suggestions for getting around these problems.
机译:在我的演讲中,我将尝试在复杂的分析和计算几何之间建立一些联系,特别是在保形映射,双曲几何,中间轴和最佳网格划分之间。黎曼映射定理说,存在单位圆盘D到任何简单n边的内部Ω的保形(保角)映射。计算这张地图需要多少工作?定理1:[1]我们可以在时间O(n·log 1 /∈log log 1 /∈)中在误差e以内计算保形图f:D→Ω。证明使用了一次二次收敛到f的迭代,但是它需要一个接近正确答案的良好初始猜测。中间轴使我们能够快速构建Ω→D的图,该图与Riemann的图非常接近,且具有精确的估计值。这给出了我们的出发点,并且定理中的时间估计取决于计算中间轴所需的时间(Chin,Snoeyink和Wang的工作是线性的)。相反,定理1的证明使用了分析中可能对CG感兴趣的想法。例如,平面域Ω的穹顶是R_ +〜3中的表面,该表面由所有半球的上包络给出,它们基于R〜2的中轴是Ω的中轴盘。在研究3个流形时出现了圆顶,Dennis Sullivan关于双曲3空间中的凸集的基本结果是定理1的核心。定理1的证明还引入了受启发的多边形的厚薄分解。通过双曲流形的厚薄分解。薄部分对应于多边形的“长而窄”的片段(但不是明显的方式;精确的定义使用了称为极值长度的保形不变式)。该分解在证明中起着重要作用:定理2:[2]任何简单的n-gon都有一个O(n)二次网格,所有角度均<120°,所有新角度均> 60°。陡峭的上限归因于伯恩和埃普斯坦。下限是这里的新颖部分。尽管简单的示例显示O(n)必须用O(n〜2)代替,但对于最多具有n个边和顶点的PSLG来说,结果也是正确的:定理3:[4]每个PSLG都有一个O(n〜2 )所有角度均小于120°且所有新角度均大于60°的四边形网格。只有O(n /∈)角满足| 0-90°| >∈,对于任何∈>0。在四边形上添加对角线可得到所有角度<120°的三角剖分,从而改善了S. Mitchell(157.5°)和Tan(132°)的结果。将粗细分解直接应用于三角剖分会得到更好的结果:对于任何∈>0。PSLG的O(n〜2)三角剖分的角度小于90°+ε(但常数会以c↘0爆炸)。对于e_0,更复杂的结构表明:定理4:[3]每个PSLG都有O {n〜(2.5))非钝三角剖分。以前没有已知的多项式界,我强烈怀疑n〜(2.5)可以提高到n〜2(已知为Sharp)。三角形可以是全部为锐角,也可以是全部为正。定理4及其证明的一些结果包括:1.每个PSLG都有一个符合O(n〜(2.5))的Delaunay三角剖分(由Edelsbrunner和Tan改进了O(n〜3))。 2. n边的任何三角剖分都具有O(n〜2)非钝角细化(Bern和Eppstein改进了O(n〜4))。我将描述的大多数算法似乎太复杂而难以实现(至少对我而言),并且是强二维的,但是我希望观众能对解决这些问题提出一些建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号