首页> 外文会议>Congress of the International Council of the Aeronautical Sciences >The Development of 3 DoF Wing Section Model for Aeroelastic and Active Control Wind Tunnel Experimental Tests
【24h】

The Development of 3 DoF Wing Section Model for Aeroelastic and Active Control Wind Tunnel Experimental Tests

机译:3 DOF翼段模型的开发空气弹性和主动控制风隧道实验试验

获取原文

摘要

This paper discusses the development of a windtunnel testing equipment for investigating the dynamics behaviour of a 3 degree of freedom (DoF) aeroelastic system. It is intended to incorporate a mechanical platform into the test section of an open-loop wind-tunnel for this purpose. This platform must be designed such that the desired aeroelastic phenomena, such as instability (flutter), occurs and can be observed within the operation regime of the wind tunnel. Hence, a string of numerical calculations and analysis must be conducted to determine the plaform parameters. Theoretical analysis needs to be carried out by first forming the system aeroelastic mathematical model. The model is derived from a 3 DoF mechanical system involving unsteady aerodynamics force and moment induced by the system dynamic response. The aerodynamic force is calculated using Doublet Point Method (DPM) by considering the wing section main modes. The obtained force then is combined with the system dynamic equations which further is transformed into a generalized coordinate system. By analyzing and simulating the mathematical model, the aeroelastic system parameters can be tuned to 'match' the wind-tunnel operation regime. Based on the obtained aeroelastic parameters, a platform configuration is designed and developed. The dynamic parameters of the platform must be adjusted such that they are equivalent to the mathematical model parameters. The dynamic characteristic of the platform then is evaluated and analyzed so that a compatible aeroelasticbehaviour can be observed during a wind-tunnel test.
机译:本文讨论了用于调查3自由度(DOF)空气弹性系统的动态行为的潮风洞检测设备的开发。为此目的,它旨在将机械平台纳入开环风隧道的试验部分。该平台必须设计成使得发生所需的空气弹性现象,例如不稳定性(颤动),并且可以在风隧道的操作状态内观察到。因此,必须进行一系列数值计算和分析以确定PLAForm参数。通过首先形成系统空气弹性数学模型,需要进行理论分析。该模型源自3 DOF机械系统,涉及由系统动态响应的不稳定空气动力学力和矩。通过考虑机翼部分主模式,使用双重点法(DPM)计算空气动力学力。然后,所获得的力与系统动态方程组合,进一步被转换为广义坐标系。通过分析和模拟数学模型,可以调整空气弹性系统参数以“匹配”风隧道操作制度。基于所获得的空气弹性参数,设计和开发了平台配置。必须调整平台的动态参数,使得它们相当于数学模型参数。然后评估和分析平台的动态特性,以便在风隧道试验期间可以观察到兼容的航空弯曲。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号