首页> 外文会议>International technical meeting of the Satellite Division of the Institute of Navigation >Investigation of Ambiguity Resolution Performance of Short-, Medium- and Longdistance Baselines Based on Four Galileo Frequencies
【24h】

Investigation of Ambiguity Resolution Performance of Short-, Medium- and Longdistance Baselines Based on Four Galileo Frequencies

机译:基于四个伽利略频率的短,中和长度基线模糊分辨率的研究

获取原文

摘要

Rapid and high-precision positioning with a Global Navigation Satellite System (GNSS) is feasible only when carrier-phase observations can serve as very precise pseudo-range measurements after integer ambiguity parameters are resolved. With current GPS, for short-distance baseline, the reliability of ambiguity resolution with single-epoch data is not high. This makes it impossible to realize real-time precise navigation for safety-related applications. For medium- and long-distance baselines, it generally takes as long as more than twenty minutes to get ambiguity resolution and the reliability is not high. Fewer available carrier-phase data is an important reason for the above low reliability and low efficiency problems. With only two frequency carrier-phase data available, it is impossible to form frequency combinations with long equivalent wavelength, which is very important for ambiguity resolution when the noise of code pseudo-range measurements is large. European Galileo system will provide signals in more frequency bands. Therefore it may be possible to resolve for the integer ambiguity faster and more reliable. Based on simulated data under different code and carrier-phase noise levels, this paper tries to investigate ambiguity resolution performance with four Galileo frequencies for short-, medium- and long-distance baselines. For short-distance baseline, geometry-based CAR method and LAMBDA method are used to test if it is possible to resolve for ambiguity within single epoch. For the CAR method, optimal combinations are carefully selected in terms of ADOP-based success-rates. For medium- and long -distance baselines, ionosphere-delay parameters are eliminated from every epoch observation equations using the so-called equivalently eliminated observation equation system. As a result, integer property of ambiguities is kept. LAMBDA method is used to investigate the performance. For short baseline, the test results show that:
机译:只有在解决整数模糊参数之后载流子相位观测可以作为非常精确的伪范围测量,才能快速和高精度地定位才能获得可行的载波型卫星系统(GNSS)是可行的。利用当前的GPS,对于短距离基线,具有单秒钟数据的模糊分辨率的可靠性并不高。这使得无法实现与安全相关应用的实时精确导航。对于中远程基线,它通常需要超过二十分钟来获得歧义分辨率,可靠性不高。更少的可用载波相位数据是上述低可靠性和低效率问题的重要原因。只有两个频率载波相位数据可用,不可能形成具有长等效波长的频率组合,这对于码伪范围测量的噪声大时,对于模糊的分辨率非常重要。欧洲伽利略系统将在更多频段中提供信号。因此,可以更快,更可靠地解析整数模糊性。基于不同代码和载波相位噪声水平下的模拟数据,本文试图研究具有四个伽利略频率的模糊分辨率,用于短,中远程基线。对于短距离基线,基于几何的汽车方法和Lambda方法用于测试单时单时是否有可能解决歧义。对于汽车方法,就基于ADOP的成功率而仔细选择了最佳组合。对于中等和长度基线,使用所谓的等效消除的观察公式系统,从每个时代观测方程中消除了电离层延迟参数。因此,保留了歧义的整数属性。 Lambda方法用于研究性能。对于短基线,测试结果表明:

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号