首页> 外文会议>ASME biennial conference on engineering systems design and analysis >STUDY OF A HYDROELASTIC INSTABILITY PHENOMENON: FLUTTER OF RACING YACHT KEELS
【24h】

STUDY OF A HYDROELASTIC INSTABILITY PHENOMENON: FLUTTER OF RACING YACHT KEELS

机译:水弹不稳定性现象的研究:赛车游艇的颤振

获取原文

摘要

In the field of aeroelasticity, flutter is a well known instability phenomenon. Flutter is a synchronized vibration which takes place in a flexible structure moving through a fluid medium. It occurs when two regular, rhythmic motions coincide in such a way that one feeds the other, drawing additional energy from surrounding flow. A classic case of wing flutter might combine wing bending with either wing twisting. This article explores the flutter phenomenon in water. An important difference from the flutter phenomenon in air is the fact that the flexible structure is evolving in heavy fluid; this implies in particular added mass effects and important fluid damping. Flutter appeared for the first time on racing yacht keels with composite fins, so in water, in 2004 : 1. On the IMOCA 60 feet boat POUJOULAT-ARMORLUX of Bernard STAMM during the transatlantic race The Transat': he lost his keel and capsized. 2. On the IMOCA 60 feet boat SILL Rolland JOURDAIN: the keel and the boat were saved. Following these problems - particularly following the loss of the keel of Bernard STAMM sailboat, accident that could have dramatic consequences for the skipper - HDS company focused on the phenomenon. Flutter has occurred only for canting keels with composite fins on IMOCA 60 feet and Volvo 70 feet racing yacht. The main questions asked are "Why are composite keels susceptible to flutter, and is it possible to predict and prevent this behaviour?", then "Can a fair indication of the flutter critical speed of the keel be given at low cost?". This presentation will introduce the strategy of HDS faced to the problem and the analytical and numerical methods implemented to estimate the flutter critical speed. Our model is based on a truncated modal basis for the most energetic modes which are generally, for a bulb keel, the lateral bending predominant mode and the torsion predominant mode. One of our requirements was to make a simple model in order to integrate the calculation of the flutter critical speed in the first design loops of a composite or steel keel. This model has worked well for the two cases of flutter appeared on IMOCA sailboat keels. Besides, to verify the quality of the model and to complete our analysis of flutter phenomenon on racing yacht keels, a 3 dimensional multi-physics simulation has been developed using the software ADINA.
机译:在空气弹性领域,颤动是一种众所周知的不稳定性现象。颤振是一种同步振动,它发生在通过流体介质的柔性结构中。当两个有规律的有规律的运动重合时,就会发生这种情况,一个人会互相喂食,又会从周围的流动中吸收更多能量。机翼颤振的经典案例可能是机翼弯曲与机翼扭曲组合。本文探讨了水中的颤动现象。与空气中的颤动现象的一个重要区别是,柔性结构在重流体中不断演化。这尤其意味着增加了质量效应和重要的流体阻尼。 Flutter首次出现在2004年用复合材料鳍制成的赛车式龙骨赛车中,在水中:1.在横渡大西洋的比赛中,伯纳德·斯塔姆(Bernard STAMM)的IMOCA 60英尺船POUJOULAT-ARMORLUX在船上:他失去了龙骨并倾覆。 2.在IMOCA 60英尺的SILL Rolland JOURDAIN船上:龙骨和船被救起。继这些问题之后,尤其是在失去Bernard STAMM帆船的龙骨之后,事故可能会对船长造成重大后果,HDS公司将重点放在了这一现象上。仅在IMOCA 60英尺和沃尔沃70英尺的赛车游艇上,用复合鳍片使龙骨倾斜会发生颤动。提出的主要问题是:“为什么复合龙骨容易抖动,并且有可能预测并防止这种行为?”,然后是“能否以低成本合理地表明龙骨的抖动临界速度?”。本演讲将介绍HDS面对该问题的策略以及为估计颤动临界速度而实施的分析和数值方法。对于大多数高能模式,我们的模型基于截断模态,对于灯泡龙骨,通常为横向弯曲主导模式和扭转主导模式。我们的要求之一是创建一个简单的模型,以便将颤振临界速度的计算整合到复合材料或钢龙骨的第一个设计循环中。对于出现在IMOCA帆船龙骨上的两种颤动情况,该模型效果很好。此外,为了验证模型的质量并完成我们对赛车龙骨颤振现象的分析,已使用ADINA软件开发了三维多物理场仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号