首页> 外文会议>ASME biennial conference on engineering systems design and analysis >ON THE ABILITY OF STRUCTURAL AND PHENOMENOLOGICAL HYPERELASTIC MODELS TO PREDICT THE MECHANICAL BEHAVIOR OF BIOLOGICAL TISSUES SUBMITTED TO MULTIAXIAL LOADINGS
【24h】

ON THE ABILITY OF STRUCTURAL AND PHENOMENOLOGICAL HYPERELASTIC MODELS TO PREDICT THE MECHANICAL BEHAVIOR OF BIOLOGICAL TISSUES SUBMITTED TO MULTIAXIAL LOADINGS

机译:结构和物候学的超弹性模型预测多轴载荷作用下生物组织力学行为的能力

获取原文

摘要

Medical surgery is currently rapidly improving and requires modeling faithfully the mechanical behavior of soft tissues. Various models exist in literature; some of them created for the study of biological materials, and others coming from the field of rubber mechanics. Indeed biological tissues show a mechanical behavior close to the one of rubbers. But while building a model, one has to keep in mind that its parameters should be loading independent and that the model should be able to predict the behavior under complex loading conditions. In addition, keeping physical parameters seems interesting since it allows a bottom up approach taking into account the microstructure of the material. In this study, the authors consider different existing hyperelastic models based on strain energy functions and identify their coefficients successively on single loading stress-stretch curves. The experimental data used, come from a paper by Zemanek dated 2009 and concerning uniaxial, equibiaxial and plane tension tests on porcine arterial walls taken in identical experimental conditions. To achieve identification, the strain energy function of each model is derived differently to provide an expression of the Cauchy stress associated to each loading case. Firstly the parameters of each model are identified on the uniaxial tension curve using a least squares method. Then, keeping the obtained parameters, predictions are made for the two other loading cases (equibiaxial and plane tension) using the associated expressions of stresses. A comparison of these predictions with experimental data is done and allows evaluating the predictive capabilities of each model for the different loading cases. A similar approach is used after swapping the loading types. Since the predictive capabilities of the models are really dependent on the loading chosen to determine their parameters, another type of identification procedure is set up. It consists in adding the residues over the three loading cases during identification. This alternative identification method allows a better agreement between each model and the various types of experiments. This study evaluated the ability of some classical hyperelastic models to be used for a predictive scope after being identified on a specific loading type. Besides it brought to light some existing models which can describe at best the mechanical behavior of biological tissues submitted to various loadings.
机译:外科手术目前正在迅速改善,并且需要如实地对软组织的机械行为进行建模。文献中存在各种模型。其中一些是为研究生物材料而创建的,另一些则来自橡胶力学领域。实际上,生物组织显示出接近于橡胶之一的机械性能。但是在构建模型时,必须记住其参数应该独立于加载,并且模型应该能够预测复杂加载条件下的行为。另外,保持物理参数似乎很有趣,因为它允许考虑材料的微观结构的自下而上的方法。在这项研究中,作者考虑了基于应变能函数的不同现有超弹性模型,并在单载荷应力-拉伸曲线上相继确定了它们的系数。使用的实验数据来自Zemanek于2009年发表的一篇论文,涉及在相同实验条件下对猪动脉壁进行的单轴,等双轴和平面拉伸试验。为了实现识别,每个模型的应变能函数得到不同的推导,以提供与每个荷载工况相关的柯西应力的表达。首先,使用最小二乘法在单轴张力曲线上识别每个模型的参数。然后,在保持获得的参数不变的情况下,使用应力的关联表达式对其他两种加载情况(等轴和平面张力)进行了预测。将这些预测与实验数据进行比较,可以评估每种模型在不同载荷情况下的预测能力。交换加载类型后,将使用类似的方法。由于模型的预测能力实际上取决于为确定其参数而选择的负荷,因此建立了另一种类型的识别程序。它包括在识别过程中,在三个装载工况上添加残留物。这种替代的识别方法可以使每个模型与各种类型的实验之间达成更好的协议。这项研究评估了某些经典超弹性模型在特定载荷类型上确定后用于预测范围的能力。除此之外,它揭示了一些现有模型,这些模型最多可以描述承受各种载荷的生物组织的机械行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号