首页> 外文会议>World biomaterials congress >Directed differentiation of human induced pluripotent stem cells into neuronal subtypes by small molecule releasing microspheres
【24h】

Directed differentiation of human induced pluripotent stem cells into neuronal subtypes by small molecule releasing microspheres

机译:小分子释放微球的人诱导多能干细胞对神经元亚型的定向分化

获取原文

摘要

Introduction: Previous microsphere research has demonstrated the potential of microsphere-based drug delivery for directing the differentiation of human induced pluripotent stem cells (hiPSCs) for neural tissue engineering applications. Cell replacement therapies using hiPSCs are ideal for conditions where patients experience loss or damage of neurons such as in Parkinson's disease (dopaminergic neurons) (DNs) and spinal cord injury (motor neurons) (MNs). The steroid guggulsterone has been shown to efficiently derive DNs from hiPSCs while MNs can be derived from a combination of the small molecules retinoic acid (RA) and purmorphamine. The aim of this study is to produce guggulsterone and purmorphamine encapsulated poly(e-caprolactone) (PCL) microspheres and then incorporate these drug releasing microspheres into hiPSC aggregates where they can promote the differentiation of hiPSCs into different neuronal subtypes. Materials and Methods: A water-in-oil emulsion was used to fabricate the microspheres. Encapsulation efficiencies were calculated by measuring light absorbance of the extracted drug at 240 nm for guggulsterone and 319 nm for purmorphamine. In vitro drug release studies over 44 and 28 days were done in triplicate. Guggulsterone microspheres will be incorporated with neural aggregates to induce differentiation into DNs while a mixture of previously encapsulated RA microspheres and purmorphamine microspheres will be incorporated to generate MNs. For incorporation of microspheres into neural aggregates, appropriate combinations of microspheres will be added to hiPSC suspensions and centrifuged into AggreWell?800 inserts (STEMCELL Technologies). The resulting differentiation will be determined by flow cytometry to detect viability, pluripotency, and neuronal marker expression while immunocytochemistry will be used to visualize the resulting differentiation. Finally, gene expression profiling will be done using next-generation sequencing techniques (Illumina, MiSeq~?) on neurons derived from the drug delivery systems. Results and Discussion: Guggulsterone-loaded and purmorphamine-loaded microspheres were successfully prepared at an encapsulation efficiency of 31.6 ± 4.8% and 84.7 ±2.3%, respectively. The average diameter of microspheres was 14.8 ± 5.9 μm for guggulsterone and 5.5 ± 2.6 μm for purmorphamine. Figure 1. Scanning electron micrographs of (A) guggulsterone microspheres and (B) purmorphamine microspheres showing a spherical and smooth morphology. Purmorphamine microspheres had a cumulative release of -25% over 28 days. Figure 2. Cumulative release of purmorphamine over 28 days. Sample size n = 3. After 12 days, cell viability for the purmorphamine microsphere incorporated aggregates (~73%) was comparable to the negative control (~70%) suggesting low cytotoxic effects from the microspheres. These microsphere aggregates showed decreased SSEA-4 pluripotency marker expression (~27%) compared to the negative control (~45%) as expected. Conclusions: We have successfully fabricated guggulsterone and purmorphamine PCL microspheres using a single emulsion technique and shown that the purmorphamine microspheres can be incorporated in hiPSC aggregates, influencing differentiation. Such combinations of small molecules releasing microspheres with hiPSC aggregates represent a novel strategy for engineering neural tissue.
机译:简介:以前的微球的研究已经证明指导人类诱导多能干细胞(人iPS细胞)的神经组织工程应用的分化基于微球的药物释放的潜力。使用人iPS细胞的细胞替代疗法是理想的条件,其中的患者经历的损失或神经元损伤,例如帕金森氏病(多巴胺能神经元)(DNS)和脊髓损伤(运动神经元)(MNS)。类固醇guggulsterone已经显示有效地派生的DN从hiPSCs的同时的MN可以从小分子视黄酸(RA)和嘌吗啡胺的组合来得到。本研究的目的是生产和guggulsterone包封嘌吗啡胺的聚(ε-己内酯)(PCL)的微球,然后将这些药物释放的微球到的hiPSC聚集在那里他们可以促进人iPS细胞分化为不同的神经元亚型。材料和方法:一种水包油乳液用于制造微球。包封率通过在用于guggulsterone 240 nm和319嘌吗啡胺处测量所提取的药物的光的吸光度计算出的。体外药物释放研究在44和28天重复进行三次。 Guggulsterone微球将与神经的聚集体被并入以诱导分化成的DN而先前封装RA微球和微球嘌吗啡胺的混合物将被结合以产生的MN。对于微球成神经的聚集体的结合,而微球的适当组合将被添加到悬浮液的hiPSC和离心分离成AggreWell?800个插入物(干细胞技术)。将所得的分化将通过流式细胞术来确定检测的可行性,多能性和神经元标记表达而免疫细胞化学将被用于可视化所产生的分化。最后,基因表达谱将在从药物输送系统源性神经元使用下一代测序技术(Illumina公司,MiSeq〜?)来完成。结果和讨论:Guggulsterone加载并在31.6±4.8%和84.7±2.3%,封装效率成功制备嘌吗啡胺加载的微球。微球的平均直径为14.8±5.9微米为guggulsterone和5.5±2.6微米为嘌吗啡胺。图1的(A)的微球guggulsterone和(B)的微球嘌吗啡胺扫描电子显微照片示出了圆球形和光滑的形态。嘌吗啡胺微球具有-25%超过28天累计释放。图2.嘌吗啡胺的累积释放超过28天。样本大小为n = 3 12天之后,细胞存活率为嘌吗啡胺微球结合的聚集体(〜73%)是可比较的,以表明从微球低细胞毒性作用与阴性对照(〜70%)。显示这些微球聚集体下降相比预期阴性对照(〜45%)SSEA-4的多能性标记物表达(〜27%)。结论:我们使用单乳液技术成功地制备和guggulsterone PCL嘌吗啡胺微球和表明嘌吗啡胺微球可以在聚集体的hiPSC被结合,影响分化。小分子释放微球的hiPSC聚集体的这种组合表示用于工程神经组织的新策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号