首页> 外文会议>World biomaterials congress >Colloidal crystal based plasma polymer patterning to control Pseudomonas aeruginosa attachment to surfaces
【24h】

Colloidal crystal based plasma polymer patterning to control Pseudomonas aeruginosa attachment to surfaces

机译:基于胶体晶体基血浆聚合物图案,用于控制铜绿假单胞菌的铜绿假单胞菌附件

获取原文

摘要

Introduction: Infections from biofiim formation on medical devices is a global problem with risks to human health and huge costs to health care worldwide.Bacteria have unique capabilities to generate resistance against antimicrobial agents. Recent studies have shown that extra-cellular DNA is a key molecule that helps biofilms form, but the precise mechanisms of how bacteria and DNA interact at surfaces remains unknown. It has been shown that micro- and nanotopography and chemistry on surfaces can influence initial biomolecule adsorption, and subsequent bacterial adriesion. However, there are fewer reports using such approaches for selectively grafting of DNA to understand the mechanisms of initial bacterial attachment responsible for biofiim formation. Material and Methods: Colloidal self-assembly was used to pattern surfaces with colloidal crystals to use as masks against allylamine plasma polymer (AAMpp) and acrylic acid plasma (AACpp) deposition to generate highly ordered patterns from the micro- to the nanoscale. PEG-aldehyde was grafted to the plasma regions via 'cloud point' grafting to prevent the attachment of bacteria on the plasma patterned surface regions, thereby controlling the adhesive sites by choice of the colloidal crystal morphology. Salmon sperm DNA was physically or covalently attached on both patterned and flat surfaces. P. aeruginosa was chosen to study the bacterial interactions with these chemically patterned surfaces. Scanning electron microscope (SEM), x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and EpMuorescence microscopy were used for pattern characterization, surface chemical analysis, and imaging of attached bacteria. Results: The AAMpp, AACpp, PEG and eDNA patterns were developed using the colloidal lithography approach. XPS results confirm the successful grafting of PEG and eDNA on the plasma coated surfaces. The AAMpp surface showed increased bacterial attachment compared to control while PEG and eDNA coated surface showed reductions in bacterial attachment as highlighted in Figures 1 and 2. FIG. 1. Epifluorescence images of DAPI stained P. aeruginosa attachment to (a) a 5 μm AAMpp pattern (b) a 5 μm AAMpp-DNA pattern (c) a 5 μm AAMpp_PEG pattern (d) a 5 μm AAMpp-PEG_DNA pattern. All scale bars: 50pm. FIG. 2. SEM images of P. aeruginosa attachment onto (a) a 5 μm AAMpp pattern (b) a 5 μm AAMpp-DNA pattern (c) a 5 μm AAMpp-PEG pattern (d) a 5 μm AAMpp-PEG-DNA pattern All scale bars: 10pm. Discussion: The bacterial attachment increase on the AAMpp surface is most likely due to the amine groups displaying a positive charge that attract the negatively charged extra-cellular polysaccharides on the bacterial cell surfaces. AACpp and DNA both contain negatively charged groups thus repulsion of bacteria is the most likely cause for the reduced bacterial attachment. Micron sized plasma patterns were able to trap bacteria due to the different chemistries presented. Different sized plasma patterns were generated through the use of different sized colloidal particles used as masks for plasma deposition. Conclusion: Surface charge plays an essential role in initial attachment of bacteria. Different chemical patterns made from colloidal crystal masking are easy to fabricate and could be useful in further applications in biomaterials research. The results showed that PEG and DNA patterns can be easily fabricated with exquisite control of pattern size and spacing and this is a useful tool to help understand how bacterial attach to surfaces.
机译:简介:从医疗设备上形成生物膜感染是危害人类健康和巨大的成本保健worldwide.Bacteria一个全球性的问题,有可能产生对抗菌药物耐药的独特功能。最近的研究表明,细胞外DNA是一个关键分子,有助于生物膜形成,但细菌和DNA相互作用的表面如何仍是未知的确切机制。它已经表明,微观和纳米形貌和化学上表面可以影响初始生物分子吸附,和随后的细菌adriesion。但是,也有使用这样的方法,用于选择性地接枝DNA的理解负责生物膜形成的初始细菌附着的机制更少报告。材料和方法:胶体自组装用于图案化表面与胶体晶体作为对抗烯丙胺等离子体聚合物(AAMpp)和丙烯酸等离子体(AACpp)沉积,以生成从微至纳米级高度有序的图案的掩模来使用。 PEG-醛经“浊点”接枝,以防止细菌在等离子体图案化表面区域中的附着,从而控制由所述胶态晶体形态的选择粘合剂站点接枝到等离子体区域。鲑鱼精子DNA的物理或共价连接的两个图案化的和平坦的表面上。铜绿假单胞菌被选择来研究与这些化学图案化表面上的细菌的相互作用。扫描电子显微镜(SEM),X射线光电子能谱(XPS),原子力显微镜(AFM),和EpMuorescence显微镜被用于图案表征,表面化学分析,并附着细菌的成像。结果:AAMpp,AACpp,PEG和Edna图案用胶体刻蚀方法开发。 XPS结果证实PEG和的eDNA的等离子体涂覆表面上的成功的接枝。所述AAMpp表面显示出增加的细菌附着,与对照相比,同时PEG和的eDNA涂布表面显示出细菌附着减少,如图1和图2突出显示。 1. DAPI的落射荧光图像染色的铜绿假单胞菌附着到(a)一种为5μmAAMpp图案(b)一种为5μmAAMpp-DNA图案(c)一种为5μmAAMpp_PEG图案(d)一个5微米AAMpp-PEG_DNA图案。所有比例尺:50微米。无花果。 2.绿脓杆菌附着的SEM图像到(a)一种为5μmAAMpp图案(b)一种为5μmAAMpp-DNA图案(c)一种为5μmAAMpp-PEG图案(d)一个5微米AAMpp-PEG-DNA图案所有比例尺:晚上10点。讨论:AAMpp表面上的细菌附着增加是最可能是由于显示正电荷,吸引细菌细胞表面上的带负电荷的胞外多糖的胺基。 AACpp和DNA都含有带负电荷的基团从而细菌的斥力是用于减少细菌附着最可能的原因。微米尺寸的等离子体模式能够捕集细菌由于呈现的不同化学物质。不同尺寸的等离子体模式被通过使用用作掩模等离子体沉积不同尺寸的胶体粒子的生成。结论:表面电荷起着细菌的初始附着了至关重要的作用。从胶体晶体掩蔽由不同的化学图案是容易制造并在生物材料研究可能是有用的进一步的应用。结果表明,PEG和DNA模式可以与图案尺寸的精美控制和间隔容易制造,这是为了帮助一个有用的工具理解如何细菌附着到表面上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号