首页> 外文会议>World biomaterials congress >Stimuli-responsive polymers for rapid and reversible cell spheroid formation
【24h】

Stimuli-responsive polymers for rapid and reversible cell spheroid formation

机译:用于快速和可逆细胞球体形成的刺激响应性聚合物

获取原文

摘要

Cell surface biomolecules govern numerous vital processes of the life cyde of cells. The ability to decorate the cell membrane with functional motifs has emerged as a powerful technique to manipulate various biological and unnatural functionalities for cell-based therapies. Particularly, cell surface engineering finds great interest in the construction of 3D cell/tumour spheroids and hybrid ensembles in the field of tissue engineering. For instance, cellular assemblies can establish an in vivo-like micro-environment and bridge the gap between 2D cell culture and tissue. In this study, we introduce two simple cell-interacting copolymers that trigger and control cell aggregation cascades in a fully reversible manner. A copolymer (P1, M_n 14100 Da) based on N-vinylpyrrolidone and 3-(acrylamido)phenylboronic acid (APBA) was used as a cis-diol reacting moiety to target cell membrane glycoprotein residues via diol-boronate ester formation, which can be out-competed by the addition of diol-rich compounds (e.g. glucose). A copolymer of di(ethylene glycol) methacrylate (DEGMA) and N-hydroxysuccinimide (P2, M_n 29800 Da), with a lower critical solution temperature (LCST) onset at sub-cell culture conditions, acted as a thermoresponsive targeting element of free primary amino groups on membrane proteins. Human dermal fibroblasts (HDF) and A549 (lung cancer) cells were incubated with P1 and P2 at different concentrations at room temperature. Both copolymers were found to induce rapid cell aggregation at low concentrations (200 μg/mL) in complete culture medium within 20 minutes (Fig.1). Fig.1. Representative microscopy images of cell aggregation in presence of P1 and P2. Various control experiments were then conducted to probe the specificity of the proposed mechanism. An increase of free glucose concentration in P1-cell suspension resulted in a gradual reduction of the cell aggregates. At the same time, incubation of APBA-free polymer with cells showed no aggregates formation. In a similar procedure, poly(DEGMA) and non-thermoresponsive PEG-based polymers were tested and no aggregation was observed. Hence, anchoring of P2 on the cell membrane concerted by temperature modulated coil-to-globule polymer transition resulted in the rapid formation of cellular clusters. To demonstrate the reversibility of the aggregation process, a thermal cycle was conducted by lowering of the temperature below the polymer's LCST. Furthermore, no toxicity was observed for P1 and P2 in both cell lines after 24 hours incubation period at high polymer concentrations (up to 500 μg/mL), as shown in Fig. 2. Fig. 2. Effect of polymer concentration on cell viability after 24 h incubation with P1 and P2 for both cell lines (mean ± SD obtained from triplicates, *p ≤ 0.05). These data inspired us to investigate the possibility of forming macroscopic "cell glues". Interestingly, upon mixing the polymers with cells (50 mg/mL) at room temperature we could form stable self-supporting gels. To conclude, we reported two simple copolymers for generic cell surface remodelling that induce rapid and reversible cell aggregation within minutes at minute polymer concentrations. The polymers could also form stable "cell-rich" gels at low concentrations under physiological conditions. We anticipate that this study will find uses in tissue regeneration and cell transplantation or as 3D tumour models.
机译:细胞表面生物分子为细胞的寿命的寿命中的许多重要过程控制。用功能基序装饰细胞膜的能力是一种强大的技术,用于操纵用于细胞的疗法的各种生物和不自然功能。特别是,细胞表面工程对组织工程领域的3D细胞/肿瘤球状体和混合组合的构建感兴趣。例如,细胞组件可以在体内微环境中建立一个体内微环境并弥合2D细胞培养和组织之间的间隙。在这项研究中,我们介绍了两种简单的细胞相互作用的共聚物,其以完全可逆的方式触发和控制电池聚集级联。基于N-乙烯基吡咯烷酮和3-(丙基酰胺)苯基硼酸(APBA)的共聚物(P1,M_N 14100Da)用作通过二醇 - 硼酸酯形成靶细胞膜糖蛋白残基的顺式二醇反应部分,这可以是通过加入富含二醇的化合物(例如葡萄糖)进行竞争。 DI(乙二醇)甲基丙烯酸甲酯(DIGMA)和N-羟基琥珀酰亚胺(P2,M_N 29800DA)的共聚物,亚细胞培养条件下具有较低的临界溶液温度(LCST),作用为游离原发性的热响应靶向元素膜蛋白质上的氨基。将人的皮肤成纤维细胞(HDF)和A549(肺癌)细胞以在室温下的不同浓度下与P1和P2一起温育。发现两种共聚物在20分钟内以在完全培养基中的低浓度(200μg/ ml)下诱导快速细胞聚集(图1)。图。1。在P1和P2存在下细胞聚集的代表性显微镜图像。然后进行各种对照实验以探讨所提出的机制的特异性。 P1细胞悬浮液中的游离葡萄糖浓度的增加导致细胞聚集体的逐渐减少。同时,用细胞孵育APBA的聚合物显示没有聚集体形成。在类似的方法中,测试聚(Degma)和非热响应PEG的聚合物,并未观察到聚集。因此,通过温度调制的线圈 - 球聚合物转变齐全的细胞膜上的P2锚固导致细胞簇的快速形成。为了证明聚集过程的可逆性,通过降低聚合物LCST以下温度来进行热循环。此外,在高分子浓度(高达500μg/ mL)的24小时孵育时间(高达500μg/ ml)的24小时后,在两种细胞系中没有观察到P1和P2的毒性,如图2所示。图2。聚合物浓度对细胞活力的影响24小时与P1和P2孵育两种细胞系(平均±Sd,从三份子酸盐获得,*p≤0.05)。这些数据激发了我们研究形成宏观“细胞胶水”的可能性。有趣的是,在室温下将聚合物与细胞(50mg / ml)混合时,我们可以形成稳定的自支撑凝胶。为了得出结论,关于通用细胞表面重塑的两种简单的共聚物,其在分钟聚合物浓度的分钟内诱导快速和可逆的细胞聚集。聚合物还可以在生理条件下以低浓度形成稳定的“细胞富含细胞”凝胶。我们预期本研究将发现用于组织再生和细胞移植或3D肿瘤模型的用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号