首页> 外文会议>International symposium on friction stir welding >Approaches to Consistently Achieve Full Penetration in Pipeline Steel Welds Using Friction Stir Welding
【24h】

Approaches to Consistently Achieve Full Penetration in Pipeline Steel Welds Using Friction Stir Welding

机译:搅拌摩擦焊方法始终如一地实现管道钢焊缝完全渗透的方法

获取原文

摘要

In on-going FSW studies, achieving consistent full penetration in pipeline steels has proven to be a difficult goal when using a portable (orbital) friction stir welding (FSW) system capable of operation in the field. Metallography, mechanical testing, and workmanship testing (root and face bend) demonstrate that full penetration can be achieved through much of the weld length, and when full penetration is achieved, mechanical properties are excellent. However, at times sections of the weld do not exhibit full penetration. As an example, metallography and root bend tests of the weld root have shown full penetration at many locations around the pipe circumference while from the same weld, locations are identified where remnant faying surfaces remain and full penetration was not achieved. Further, some welds exhibit full penetration and yet at some locations these welds are accompanied by a relatively continuous oxide path that remains at the weld root. Conversely, if the FSW tool penetrates into the support anvil, anvil material is drawn into the weld nugget. It is not known at what length a lack of penetration flaw becomes a defect, if the continuous oxide is a flaw or a defect, or under what conditions weld nugget contamination by the anvil is a defect. By definition, a flaw is an imperfection in the weld zone whereas a defect negatively impacts properties or performance. Indeed, the difference between being an innocuous flaw or a harmful defect that reduces service life is likely a function of the service environment and operating conditions. Lack of penetration, continuous oxide flaws, and anvil material contamination of the weld nugget are difficult flaws (defects) to locate using conventional nondestructive testing (NDT) methods. Accordingly, until proven otherwise, flaws of these types must be considered unacceptable in a pressurized gas pipeline structure. Weld properties achieved following FSW of X52 and X60 pipeline steels, examples of weld flaws that may occur, and briefly, the limits of NDT methods used to detect these flaws, will be illustrated. Based on the observations made during this initial pipeline FSW study, the most critical goal was to identify the most efficient means of assuring consistent full penetration in friction stir welded pipeline steel. Based on the hypotheses that 1) root notch lack of penetration is a flaw/defect that needs to be avoided, 2) achieving consistent full penetration in the field without anvil contact is impractical with current FSW methods, and 3) available NDT techniques are inadequate to locate small root notch lack of bonding flaws, new approaches for pipeline FSW are proposed. Two approaches to eliminate the potential for lack of penetration flaws at the weld root are being evaluated. These methods include 1) use of a sacrificial anvil and 2) root arc welding followed by a partial penetration friction stir weld. The sacrificial anvil approach uses a small insert in the structural anvil where metal of the same chemistry as the pipeline material is used as the insert material. In this approach, the FSW tool penetrates through the pipe wall thickness and into the sacrificial anvil achieving consistent full penetration in the pipeline steel. Removal of the small sacrificial anvil may or may not be required. Arc welding of the root prior to FSW builds on a technique developed at ExxonMobil whereby an internal root arc weld is used to provide support for the FSW process. This technique takes advantage of the efficiency afforded by internal root welding for onshore pipeline construction. After the internal root weld is made, the butt joint faying surfaces remain and a partial penetration friction stir weld penetrates into the arc weld root pass.
机译:在正在进行的FSW研究中,当使用能够在现场运行的便携式(轨道)搅拌摩擦焊(FSW)系统时,在管道钢中实现一致的完全熔深已被证明是一个困难的目标。金相学,机械测试和工艺测试(根部弯曲和端面弯曲)表明,在大部分焊缝长度中都可以实现完全熔深,并且当达到完全熔深时,机械性能非常好。但是,有时焊缝的各个部分无法完全熔透。例如,焊缝根部的金相学和根部弯曲测试表明,在管道圆周周围的许多位置都具有完全熔透性,而从同一根焊缝中,可以识别出保留剩余粘结面且未实现完全熔透的位置。此外,一些焊缝表现出完全的熔深,但是在某些位置,这些焊缝伴随有保留在焊缝根部的相对连续的氧化物路径。相反,如果FSW工具渗入支撑砧,则砧材料会被拉入焊接熔核。尚不清楚缺乏连续渗透缺陷会在多长的程度上成为缺陷,如果连续氧化物是缺陷或缺陷,或者在什么条件下砧座焊接的熔核污染是缺陷。根据定义,缺陷是指焊接区域的缺陷,而缺陷会对性能或性能产生负面影响。确实,无害缺陷或有害缺陷会缩短使用寿命,两者之间的区别很可能取决于服务环境和操作条件。缺乏熔深,连续的氧化物缺陷以及焊核的砧座材料污染是使用传统的非破坏性测试(NDT)方法很难定位的缺陷(缺陷)。因此,除非另外证明,否则在加压气体管道结构中必须认为这些类型的缺陷是不可接受的。将说明X52和X60管线钢的FSW之后的焊接性能,可能发生的焊接缺陷示例,并简要说明用于检测这些缺陷的NDT方法的局限性。根据最初的管道FSW研究期间的观察结果,最关键的目标是确定最有效的方法,以确保搅拌摩擦焊管道钢中一致的完全熔深。基于以下假设:1)根缺口没有穿透是需要避免的缺陷/缺陷; 2)在野外实现稳定的完全穿透而没有砧座接触是当前FSW方法不可行的; 3)现有的NDT技术不足为了定位没有粘结缺陷的小根缺口,提出了管道FSW的新方法。目前正在评估两种方法来消除焊缝根部缺少渗透缺陷的可能性。这些方法包括:1)使用牺牲砧和2)根弧焊,然后进行部分熔透摩擦搅拌焊。牺牲砧方法在结构砧中使用一个小的插入物,其中化学性质与管道材料相同的金属用作插入物材料。在这种方法中,FSW工具穿透管壁厚度并进入牺牲砧,从而在管道钢中实现始终如一的完全穿透。可能需要也可能不需要去除小的牺牲砧。 FSW之前的根部电弧焊是在ExxonMobil开发的技术基础上进行的,该技术使用内部根部电弧焊为FSW过程提供支持。该技术利用了内部根部焊接为陆上管道建设提供的效率。进行内部根部焊缝后,保留对接接合面,并且部分穿透摩擦搅拌焊进入电弧焊根部焊道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号