首页> 外文会议>ASME international conference on energy sustainability >PREDICTING HYDRODYNAMIC AND HEAT TRANSFER EFFECTS OF SPARGER GEOMETRY AND PLACEMENT WITHIN A COLUMN PHOTOBIOREACTOR USING COMPUTATIONAL FLUID DYNAMICS
【24h】

PREDICTING HYDRODYNAMIC AND HEAT TRANSFER EFFECTS OF SPARGER GEOMETRY AND PLACEMENT WITHIN A COLUMN PHOTOBIOREACTOR USING COMPUTATIONAL FLUID DYNAMICS

机译:利用计算流体力学预测柱状光电倍增管中的稀疏几何和位置的水动力和传热效应

获取原文

摘要

This project investigates the effects of sparger geometry and placement on bubble and fluid flow patterns and convective heat transfer within a column photobioreactor (PBR) using Computational Fluid Dynamics (CFD). Experimental and computational studies have been completed that focused on the hydrodynamics and heat transfer within a rectangular column photobioreactor (34.29 cm long x 15.25 cm wide x 34.29 cm tall) with a single sparger located at the center of its base (33.02 cm X 1.27 cm) running lengthwise. This study extends previous work by investigating the flow patterns and heat transfer effects due to full bottom sparger or porous sparger. The gas bubbles and the water-based media within the photobioreactor are modeled using the Lagrangian-Eulerian approach. A low Reynolds k-Epsilon turbulence model is used to predict near-wall flow patterns. A flat surface photobioreactor is used to achieve sufficient light penetration into the system. The main interaction forces between the bubbles and the media, including drag forces, added mass forces, and lift forces are considered. The overarching goal of this research is to produce biofuels and bioproducts through the improved design of column PBRs used for microalgae production. An important factor in designing photobioreactors is the appropriate selection of sparger geometry and placement. The sparger governs the bubble size distribution and gas holdup. These factors in turn influence flow pattern, effective interfacial area, rates of mass transfer, heat transfer, and mixing. It is hypothesized that increasing the sparger width will improve uniformity of bubble distribution as well as mixing. Despite its importance, optimizing the sparger geometry and placement in PBRs for microalgae production is still largely not understood. In this study, the simulation's results are presented for various spargers, which can be helpful in designing appropriate sparger geometry and proper placement for increased microalgae production.
机译:该项目使用计算流体动力学(CFD)研究了分布器几何形状和位置对气泡和流体流动模式以及柱光生物反应器(PBR)内对流传热的影响。已经完成了实验和计算研究,着重研究了矩形柱光生物反应器(长34.29厘米x宽15.25厘米x高34.29厘米)中的流体动力学和传热,并且在其底部中心(33.02厘米X 1.27厘米)装有单个喷射器)纵向运行。这项研究通过研究全底鼓泡器或多孔鼓泡器的流动模式和传热效果,扩展了以前的工作。使用Lagrangian-Eulerian方法对光生物反应器中的气泡和水基介质进行建模。低雷诺k-Epsilon湍流模型用于预测近壁流型。使用平坦的表面光生物反应器以使足够的光穿透到系统中。考虑了气泡与介质之间的主要相互作用力,包括阻力,附加质量力和升力。这项研究的总体目标是通过改进用于微藻生产的PBR柱的设计来生产生物燃料和生物产品。在设计光生物反应器的一个重要因素是排气管的几何形状和位置的适当选择。喷射器控制气泡的大小分布和气体滞留率。这些因素反过来会影响流型,有效界面面积,传质速率,传热和混合。假设增加喷射器的宽度将改善气泡分布和混合的均匀性。尽管它很重要,但在很大程度上仍然不了解为微藻生产优化分布器几何形状和在PBR中的位置。在这项研究中,给出了各种喷射器的仿真结果,这有助于设计合适的喷射器几何形状和适当的放置位置,以增加微藻的产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号