首页> 外文会议>International conference on environmental and engineering geophysics >Estimation of near-surface shear-wave velocity using multichannel analysis of Love waves (MALW)
【24h】

Estimation of near-surface shear-wave velocity using multichannel analysis of Love waves (MALW)

机译:利用爱波浪(男性)多通道分析近表面剪力波速度的估计(男性)

获取原文

摘要

As theory dictates, for a series of horizontal layers, a pure, plane SH wave refracts and reflects only SH waves, and does not undergo wavetype conversion as do incident P or Sv waves. This is why the shallow SH-wave refraction method is popular, abundant SH-wave refraction data were acquired, and usually works successfully in defining near-surface shear-wave velocities. The information used in the SH-wave refraction method is the first arrivals. Most SH-wave data also contain strong Love-wave energy. High-frequency Love waves are a type of surface wave formed by the constructive interference of multiple reflections of SH waves in the shallow subsurface. Unlike Rayleigh waves, the dispersion of Love waves is independent of P-wave velocity. Love-wave phase velocity of a layered earth model is a function of frequency and three groups of earth properties: SHwave velocity, density, and thickness of layers. In theory, a fewer parameters make the inversion of Love waves more stable and reduce the degree of nonuniqueness. Analyzing SH-wave data using Love-wave inversion for near-surface applications may attract as much attention as Rayleigh-wave inversion because it provides SH-wave velocities that are critical for anisotropy analysis. In this paper, the same inversion algorithm used for Rayleigh-wave analysis is applied to Love-wave data. Compared to Rayleigh waves, fewer unknowns in multichannel analysis of Love waves (MALW), in theory, make dispersion curves of Love waves are simpler, which leads to more stable inversion of Love waves and reduces the degree of nonuniqueness, and also because of being independent of P-wave velocity, "mode crossing" in an image of Love-wave energy is less common. Owing to a long geophone spread commonly used in SH-wave refraction survey, an image of Love-wave energy is clean and sharp, which makes picking phase velocities of Love waves much easier and more accurate. Real-world examples demonstrate the success of reprocessing SHwave data using Love-wave analysis.
机译:作为理论决定,对于一系列水平层,纯平面SH波波折射并仅反射SH波,并且不会经历WheType转换,如事件P或SV波一样。这就是为什么浅SH波折射方法是流行的,获得丰富的SH波折射数据,通常成功地在定义近表面剪切波速度方面工作。 SH波折射方法中使用的信息是第一个到达。大多数SH波数据也包含强烈的爱波能量。高频爱波是由SH波在浅层地下中的多次反射的建设性干扰形成的表面波。与瑞利波不同,爱波的色散与P波速度无关。层状地球模型的爱波阶段速度是频率和三组接地特性的函数:Sh波速度,密度和层的厚度。从理论上讲,更少的参数使得爱情的反转更稳定并且降低了非承诺的程度。分析使用Love-Wave Virsion进行近表面应用的SH波数据可能会吸引瑞利波反演的关注,因为它提供了对于各向异性分析至关重要的SH波速度。在本文中,应用于瑞利波分析的相同反演算法对爱波数据。与Rayleigh波相比,在理论上使爱浪波浪(MALW)的多通道分析的未知数更少,使爱浪的分散曲线更加简单,这导致爱情波浪更稳定,减少了非不充分性的程度,也导致了义力独立于P波速度,在爱波能量的图像中的“模式交叉”不太常见。由于在SH波折射调查中使用的长地震频率,爱波能量的形象清洁,锐利,这使得挑选爱情波浪更容易更准确。现实世界的例子展示了使用爱波分析重新处理SHWAVE数据的成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号