首页> 外文会议>International conference on environmental and engineering geophysics;ICEEG 2010 >Estimation of near-surface shear-wave velocity using multichannel analysis of Love waves (MALW)
【24h】

Estimation of near-surface shear-wave velocity using multichannel analysis of Love waves (MALW)

机译:使用爱波(MALE)的多通道分析估算近地表剪切波速度

获取原文

摘要

As theory dictates, for a series of horizontal layers, a pure, plane SH wave refracts and reflects only SH waves, and does not undergo wavetype conversion as do incident P or Sv waves. This is why the shallow SH-wave refraction method is popular, abundant SH-wave refraction data were acquired, and usually works successfully in defining near-surface shear-wave velocities. The information used in the SH-wave refraction method is the first arrivals. Most SH-wave data also contain strong Love-wave energy. High-frequency Love waves are a type of surface wave formed by the constructive interference of multiple reflections of SH waves in the shallow subsurface. Unlike Rayleigh waves, the dispersion of Love waves is independent of P-wave velocity. Love-wave phase velocity of a layered earth model is a function of frequency and three groups of earth properties: SHwave velocity, density, and thickness of layers. In theory, a fewer parameters make the inversion of Love waves more stable and reduce the degree of nonuniqueness. Analyzing SH-wave data using Love-wave inversion for near-surface applications may attract as much attention as Rayleigh-wave inversion because it provides SH-wave velocities that are critical for anisotropy analysis. In this paper, the same inversion algorithm used for Rayleigh-wave analysis is applied to Love-wave data. Compared to Rayleigh waves, fewer unknowns in multichannel analysis of Love waves (MALW), in theory, make dispersion curves of Love waves are simpler, which leads to more stable inversion of Love waves and reduces the degree of nonuniqueness, and also because of being independent of P-wave velocity, "mode crossing" in an image of Love-wave energy is less common. Owing to a long geophone spread commonly used in SH-wave refraction survey, an image of Love-wave energy is clean and sharp, which makes picking phase velocities of Love waves much easier and more accurate. Real-world examples demonstrate the success of reprocessing SHwave data using Love-wave analysis.
机译:从理论上讲,对于一系列水平层,纯的平面SH波仅折射和反射SH波,并且不像入射P或Sv波那样经历波型转换。这就是为什么浅SH波折射法很受欢迎,获得了大量SH波折射数据的原因,并且通常可以成功地确定近地表剪切波速度。 SH波折射法中使用的信息是首次到达。大多数SH波数据也包含很强的Love波能量。高频洛夫波是一种表面波,它是由SH波在浅层次表面多次反射的相长干涉而形成的。与瑞利波不同,洛夫波的色散与P波速度无关。分层地球模型的爱波相速度是频率和三组地球属性的函数:SH波速度,密度和层厚度。从理论上讲,较少的参数可使Love波的反演更加稳定,并减少非唯一性的程度。在近地表应用中使用Love波反演来分析SH波数据可能会引起与Rayleigh波反演一样多的关注,因为它提供了对各向异性分析至关重要的SH波速度。在本文中,将与瑞利波分析相同的反演算法应用于Love-wave数据。与瑞利波相比,在爱波(MALW)的多通道分析中,从理论上讲,使爱波的色散曲线更简单,这导致爱波的反演更加稳定,并减少了非唯一性的程度,并且还因为与P波速度无关,在Love波能量图像中的“模式交叉”不太常见。由于在SH波折射测量中通常使用较长的地震检波器,因此Love波能量的图像清晰锐利,这使得Love波的拾取相位速度变得更加容易和准确。实际示例演示了使用Love-wave分析重新处理SHwave数据的成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号