首页> 外文会议>International conference on nanochannels, microchannels and minichannels;ICNMM2011 >DEVELOPING CROSS DRAG EXPRESSIONS FOR NANOTUBE BUNDELS USING MOLECULAR DYNAMICS
【24h】

DEVELOPING CROSS DRAG EXPRESSIONS FOR NANOTUBE BUNDELS USING MOLECULAR DYNAMICS

机译:利用分子动力学发展纳米管束的交叉表达

获取原文

摘要

The nonequilibrium molecular dynamics (NEMD) simulations are performed to calculation the cross drag over a nanotube located in a uniform liquid argon flow. As is known, the behavior of fluid flows in nano-scale sizes is very different from that in microscopic and macroscopic sizes. In this work, our concern is on the flow of argon molecules over a nanotube which occurs in nanoscale sizes. We calculate the cross drag enforced the nanotube at Re≤1.0. In this regard, we use the molecular dynamics and simulate the flow of argon molecules over (6,0), (8,0) and (10,0) nanotubes. The simulations are performed at different velocities and the cross drag coefficient is computed at different Reynolds numbers. To improve the efficiency of simulations, we use USHER algorithm and examin the insertion of molecules at the end of the simulation box, the argon molecules are located out of box. Using the power trend line, we derived a formula, which approximates the cross drag of chosen nanotube. In all simulations, only the first two and the last two rings of the nanotube are frozen. All non-bonded interactions are calculated based on the Lennard-Jones potential. The results if molecular dynamics are compared with two empirical expressions provided by experiments performed on the flow over a macro-scale cylinder. The results show that the cross drag force on a single-walled nanotube calculated from MD simulations is larger than that provided by the empirical expressions in slow flows (Re«1.0). As is expected the results of continuum flow calculations cannot be trusted to predict the drag of a nanotubes if Re«1.0. The difference increases as the flow velocity decreases.
机译:进行非平衡分子动力学(NEMD)模拟以计算位于均匀液氩流中的纳米管上的横向阻力。众所周知,纳米尺寸的流体流动行为与微观和宏观尺寸的流体行为非常不同。在这项工作中,我们关注的是氩分子在纳米级纳米管上的流动。我们计算出在Re≤1.0时强制施加纳米管的横向阻力。在这方面,我们使用分子动力学并模拟了氩分子在(6,0),(8,0)和(10,0)纳米管上的流动。以不同的速度进行仿真,并以不同的雷诺数计算横向阻力系数。为了提高模拟效率,我们使用USHER算法并检查了模拟框末端的分子插入情况,使氩分子位于框外。使用功率趋势线,我们得出了一个公式,该公式近似于所选纳米管的横向阻力。在所有模拟中,仅冻结纳米管的前两个环和最后两个环。所有非键相互作用均基于Lennard-Jones势计算。如果将分子动力学与通过在大型圆柱体上的流动进行的实验提供的两个经验表达式进行比较的结果。结果表明,通过MD模拟计算得出的单壁纳米管上的横向阻力大于在缓慢流动中的经验表达式所提供的横向阻力(Re«1.0)。如所期望的,如果Re <1.0,则不能相信连续流计算的结果来预测纳米管的阻力。差随着流速的降低而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号