首页> 外文会议>International conference on nanochannels, microchannels and minichannels;ICNMM2011 >THERMALLY INDUCED OSCILLATORY TWO-PHASE FLOW IN A MINI-CHANNEL:TOWARDS UNDERSTANDING PULSATING HEAT PIPES
【24h】

THERMALLY INDUCED OSCILLATORY TWO-PHASE FLOW IN A MINI-CHANNEL:TOWARDS UNDERSTANDING PULSATING HEAT PIPES

机译:迷你通道中的热诱导振荡两相流:对脉动热管的理解

获取原文

摘要

Research on Pulsating Heat Pipes (PHP) has received substantial attention in the recent past, due to its unique operating characteristics and potential applications in many passive heat transport situations. Reliable design tools can only be formulated if the nuances of its operating principles are well understood; at present, this is rather insufficient for framing comprehensive models. In this context, this paper reports experimental data on self-sustained thermally driven oscillations in a 2.0 mm ID capillary tube sub-system, consisting of only one vapor slug and one liquid plug ('unit-cell'). Understanding such a sub-system/'unit-cell' is vital, as it represents a primary unit of a multi-turn PHP. Experiments have been performed with two fluids, i.e. Pentane (BP = 36.1°C) and Methanol (BP=64.7°C) at different evaporator (40°C to 65°C) and condenser temperatures (-5°C to 15°C) respectively. High speed videography and spectrum analysis reveals that self-sustained thermally driven flow oscillations are observed for both fluids, albeit the dominant periodicity is different. Oscillation frequencies vary from 1.5 Hz to 4.2 Hz approximately, depending on the fluid, operating pressure and temperature. Increasing the difference of temperature between the evaporator and condenser sections leads to enhanced driving force for creating flow oscillations. The resulting phase velocities cause interfacial instabilities, resulting in the formation of secondary bubbles which break-off from the main meniscus. Results of this study can be compared to numerical models and will be useful to understand the physics of multi-turn PHPs.
机译:脉动热管(PHP)的研究由于其独特的操作特性和在许多被动传热条件下的潜在应用而在最近受到了广泛的关注。只有充分理解其工作原理的细微差别,才能制定出可靠的设计工具。目前,这不足以构成综合模型。在这种情况下,本文报告了2.0毫米内径毛细管子系统中自我维持的热驱动振荡的实验数据,该子系统仅由一个蒸气塞和一个液体塞(“单元电池”)组成。理解这样的子系统/“单元”是至关重要的,因为它代表了多匝PHP的主要单元。在不同的蒸发器(40°C至65°C)和冷凝器温度(-5°C至15°C)的两种流体下进行了实验,即戊烷(BP = 36.1°C)和甲醇(BP = 64.7°C) ) 分别。高速摄影和频谱分析表明,两种流体都观察到了自我维持的热驱动流振荡,尽管主要的周期性不同。振荡频率大约在1.5 Hz至4.2 Hz之间,具体取决于流体,工作压力和温度。蒸发器部分和冷凝器部分之间的温度差增加导致用于产生流动振荡的驱动力增加。产生的相速度引起界面不稳定性,导致形成从主弯月面破裂的二次气泡。这项研究的结果可以与数值模型进行比较,并将有助于理解多匝PHP的物理原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号