首页> 外文会议>AIAA fluid dynamics conference and exhibit >Boundary Layer Profile Behind Gaseous Detonation as it Affects Reflected Shock Wave Bifurcation
【24h】

Boundary Layer Profile Behind Gaseous Detonation as it Affects Reflected Shock Wave Bifurcation

机译:气体爆轰背后的边界层轮廓,因为它影响反射的冲击波分叉

获取原文

摘要

The present study explores the flow field created by reflecting detonations using heat transfer and pressure measurements near the location of detonation reflection. Schlieren imaging techniques are used to examine the possibility of shock wave-boundary layer interaction. These measurements are compared to laminar boundary layer theory and a one-dimensional model of detonation reflection. Experiments were carried out in a 7.6 m long detonation tube with a rectangular test section using mixtures of stoichiometric hydrogen-oxygen with argon dilution of 0, 50, 67, and 83% at an initial pressure of 10, 25, and 40 kPa. Optical observations show that minimal interaction of the reflected shock wave results when propagating into the boundary layer created by the incident wave. The heat transfer rate is qualitatively consistent with the time dependent laminar boundary layer predictions, however the magnitude is consistently larger and substantial (factor of three) peak-to-peak fluctuations are observed. The pressure measurements show good agreement between predicted ideal incident and reflected wave speeds. The pressure amplitudes are under-predicted for no argon dilution cases particularly at 40 kPa, but in reasonable agreement for lower pressures and higher dilutions.
机译:本研究探索了通过在爆轰反射位置附近使用传热和压力测量来反射爆轰而产生的流场。 Schlieren成像技术用于检查冲击波边界层相互作用的可能性。将这些测量结果与层流边界层理论和爆轰反射的一维模型进行了比较。在具有矩形测试截面的7.6 m长的引爆管中进行实验,使用化学计量的氢氧和氩气稀释度分别为0、50、67和83%的混合物,初始压力为10、25和40 kPa。光学观察表明,当传播到入射波产生的边界层时,反射的冲击波的相互作用最小。传热速率在质量上与时间相关的层流边界层预测一致,但是其幅度始终较大,并且观察到了较大的(三分之一)峰峰值波动。压力测量结果表明预测的理想入射和反射波速之间具有良好的一致性。在没有氩气稀释的情况下,尤其是在40 kPa的情况下,压力幅度被低估了,但是对于较低的压力和较高的稀释度,则是合理的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号