首页> 外文会议>ASME turbo expo >NONLINEAR PHENOMENA IN THERMOACOUSTIC SYSTEMS WITH PREMIXED FLAMES
【24h】

NONLINEAR PHENOMENA IN THERMOACOUSTIC SYSTEMS WITH PREMIXED FLAMES

机译:具有预混合火焰的热声系统中的非线性现象

获取原文

摘要

Nonlinear analysis of thermoacoustic instability is essential for prediction offrequencies, amplitudes and stability of limit cycles. Limit cycles in thermoacoustic systems are reached when the energy input from driving processes and energy losses from damping processes balance each other over a cycle of the oscillation.In this paper an integral relation for the rate of change of energy of a thermoacoustic system is derived. This relation is analogous to the well-known Rayleigh criterion in thermoacous-tics, but can be used to calculate the amplitudes of limit cycles, as well as their stability. The relation is applied to a thermoacoustic system of a ducted slot-stabilized 2-D premixed flame. The flame is modelled using a nonlinear kinematic model based on the G-equation, while the acoustics of planar waves in the tube are governed by linearised momentum and energy equations. Using open-loop forced simulations, the flame describing function (FDF) is calculated. The gain and phase information from the FDF is used with the integral relation to construct a cyclic integral rate of change of energy (CIRCE) diagram that indicates the amplitude and stability of limit cycles. This diagram is also used to identify the types of bifurcation the system exhibits and to find the minimum amplitude of excitation needed to reach a stable limit cycle from another linearly stable state, for single-mode thermoacoustic systems. Furthermore, this diagram shows precisely how the choice of velocity model and the amplitude-dependence of the gain and the phase of the FDF influence the nonlinear dynamics of the system.Time domain simulations of the coupled thermoacoustic system are performed with a Galerkin discretization for acoustic pressure and velocity. Limit cycle calculations using a single mode, as well as twenty modes, are compared against predictions from the CIRCE diagram. For the single mode system, the time domain calculations agree well with the frequency domain predictions. The heat release rate is highly nonlinear but, because there is only a single acoustic mode, this does not affect the limit cycle amplitude. For the twenty-mode system, however, the higher harmonics of the heat release rate and acoustic velocity interact resulting in a larger limit cycle amplitude. Multi-mode simulations show that in some situations the contribution from higher harmonics to the nonlinear dynamics can be significant and must be considered for an accurate and comprehensive analysis of thermoacoustic systems.
机译:热声不稳定性的非线性分析对于预测极限循环的频率,幅度和稳定性至关重要。当驱动过程中的能量输入和阻尼过程中的能量损失在整个振荡周期内达到平衡时,热声系统便达到了极限循环。本文得出了热声系统能量变化率的积分关系。该关系类似于热声学中众所周知的瑞利准则,但可用于计算极限环的振幅及其稳定性。该关系适用于管道槽稳定的二维预混火焰的热声系统。使用基于G方程的非线性运动学模型对火焰进行建模,而管中平面波的声学则由线性化的动量和能量方程式控制。使用开环强制模拟,可以计算出火焰描述函数(FDF)。来自FDF的增益和相位信息与积分关系一起使用,以构建一个循环积分能量变化率(CIRCE)图,该图指示极限循环的幅度和稳定性。对于单模热声系统,该图还用于识别系统出现的分叉类型,并找到从另一个线性稳定状态达到稳定极限循环所需的最小激励幅度。此外,该图还精确显示了速度模型的选择以及增益和FDF的相位的幅度依赖性如何影响系统的非线性动力学。耦合热声系统的时域仿真是通过Galerkin离散化进行声学的压力和速度。将使用单一模式以及二十种模式的极限循环计算与来自CIRCE图的预测进行比较。对于单模系统,时域计算与频域预测非常吻合。放热率是高度非线性的,但是由于只有一个声学模式,因此不会影响极限循环幅度。但是,对于二十模系统,热量释放速率和声速的高次谐波相互作用,导致更大的极限循环幅度。多模式仿真表明,在某些情况下,高次谐波对非线性动力学的贡献可能很大,因此必须对热声系统进行准确而全面的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号