首页> 外文会议>AIAA flow control conference >Active Control of a Wing Tip Vortex with a Dielectric Barrier Discharge Plasma Actuator
【24h】

Active Control of a Wing Tip Vortex with a Dielectric Barrier Discharge Plasma Actuator

机译:带有电介质阻挡放电等离子体致动器的翼尖涡流的主动控制

获取原文

摘要

An experimental investigation has been conducted into the active control of a wing tip vortex with a dielectric barrier discharge plasma actuator. The actuator was placed around the wing tip with the momentum added in the opposite direction to that of the cross stream flow. Particle image velocimetry measurements were performed on a low aspect ratio rounded tip NACA 0015 wing in a low speed wind tunnel at a maximum Reynolds number of 2.8 × 10~5, based on the wing chord. Experiments were performed at various angles of attack. The current strength of the plasma actuator limited the maximum freestream velocity to 15 ms~(-1). For low angles of attack (2° and 6°), the near field results showed an increase in vortex size and a reduction in the core circulation when control was applied. The effectiveness of the actuator reduced with freestream velocity and angle of attack. The use of the plasma actuator was found to increase the velocity fluctuations close to the surface of the wing. At an angle of attack of 14°, the actuator resulted in a smaller vortex and an increase in the core circulation. It was hypothesised that at this high angle of attack, the vorticity generated at the suction side electrodes was fed into the core, increasing the strength of the tip vortex. The results show that the potential of the plasma actuator for the near field control of the tip vortex is promising provided the angle of attack is low.
机译:已经通过介电势垒放电等离子体致动器对翼尖涡旋的主动控制进行了实验研究。将促动器放置在机翼尖端周围,并在与横流相反的方向上增加动量。粒子图像测速仪的测量是在低速风洞中的低长宽比圆形尖端NACA 0015机翼上进行的,最大雷诺数为2.8×10〜5(基于机翼弦)。在不同的迎角进行了实验。等离子体致动器的电流强度将最大自由流速度限制为15 ms〜(-1)。对于低攻角(2°和6°),当应用控制时,近场结果显示涡旋尺寸增加且堆芯循环减少。执行器的效率随自由流速度和攻角而降低。发现使用等离子体致动器会增加靠近机翼表面的速度波动。在14°的迎角下,执行器导致较小的涡流和铁心循环的增加。假设在如此高的迎角下,在吸力侧电极上产生的涡流被馈入磁芯,从而增加了尖端涡流的强度。结果表明,只要攻角较小,等离子体致动器在尖端涡旋近场控制方面的潜力是有前途的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号