首页> 外文会议>International congress on advances in nuclear power plants >An Experimental Study of External Reactor Vessel Cooling Strategy on the Critical Heat Flux using the Graphene Oxide Nanofluid
【24h】

An Experimental Study of External Reactor Vessel Cooling Strategy on the Critical Heat Flux using the Graphene Oxide Nanofluid

机译:氧化石墨烯含氧化物纳米流体外部反应器血管冷却策略对临界热通量的实验研究

获取原文

摘要

External reactor vessel cooling (ERVC) for in-vessel retention (IVR) of corium as a key severe accident management strategy can be achieved by flooding the reactor cavity during a severe accident. In this accident mitigation strategy, the decay heat removal capability depends on whether the imposed heat flux exceeds critical heat flux (CHF). To provide sufficient cooling for high-power reactors such as APR1400, there have been some R&D efforts to use the reactor vessel with micro-porous coating and nanofluids boiling-induced coating. The dispersion stability of graphene-oxide nanofluid in the chemical conditions of flooding water that includes boric acid, lithium hydroxide (LiOH) and tri-sodium phosphate (TSP) was checked in terms of surface charge or zeta potential before the CHF experiments. Results showed that graphene-oxide nanofluids were very stable under ERVC environment. The critical heat flux (CHF) on the reactor vessel external wall was measured using the small scale two-dimensional slide test section. The radius of the curvature is 0.1m. The dimension of each part in the facility simulated the APR-1400. The heater was designed to produce the different heat flux. The magnitude of heat flux follows the one of the APR-1400 when the severe accident occurred. All tests were conducted under inlet subcooling 10K. Graphene-oxide nanofluids (concentration : 10~(-4)V%) enhanced CHF limits up to about 20% at mass flux 50kg/m2s and 100kg/m2s in comparison with the results of the distilled water at same test condition.
机译:外部反应容器冷却(ERVC),用于船真皮作为密钥严重事故管理策略的保留(IVR)可以通过严重事故期间淹没反应堆腔来实现。在这起事故中缓解策略,衰变热去除能力依赖于施加的热通量是否超过临界热通量(CHF)。为了提供足够的冷却高功率的反应器如APR1400,也出现了一些R&d努力利用具有微多孔涂层和纳米流体沸腾引起的涂层的反应器容器。石墨烯氧化物纳米流体在包括硼酸,氢氧化锂(氢氧化锂)和磷酸三钠(TSP)驱水的化学条件的分散稳定性在CHF的实验前的表面电荷或ζ电位方面被检查。结果表明,石墨烯氧化物纳米流体非常稳定ERVC环境下。临界热通量(CHF)在反应器容器外壁用的是小规模的二维滑动测试部分测得的。的曲率半径是0.1米。在设施的每一部分的尺寸模拟APR-1400。加热器被设计成产生不同的热通量。热流量的大小遵循APR-1400的严重事故发生时的一个。所有的测试都是在进口过冷10K进行。石墨烯氧化物纳米流体(浓度:10〜(-4)V%)增强CHF在质量限制高达约20%助焊剂50KG /米2·秒和100公斤/ M2S与蒸馏水中的相同的试验条件的结果相比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号