首页> 外文会议>ASME/JSME thermal engineering joint conference;AJTEC2011 >COMMON CURRENCY FOR SYSTEM INTEGRATION OF HIGH INTENSITY ENERGY SUBSYSTEMS
【24h】

COMMON CURRENCY FOR SYSTEM INTEGRATION OF HIGH INTENSITY ENERGY SUBSYSTEMS

机译:高强度能源子系统的系统集成通用货币

获取原文

摘要

Aerospace vehicle design has progressed in an evolutionary manner, with certain discrete changes such as turbine engines replacing propellers for higher speeds. The evolution has worked very well for commercial aircraft because the major components can be optimized independently. This is not true for many military configurations which require a more integrated approach. In addition, the introduction of aspects for which there is no pre-existing database requires special attention. Examples of subsystem that have no pre-existing data base include directed energy weapons (DEW) such as high power microwaves (HPM) and high energy lasers (HEL). These devices are inefficient, therefore a large portion of the energy required to operate the device is converted to waste heat and must be transferred to a suitable heat sink. For HPM, the average heat load during one 'shot' is on the same order as traditional subsystems and thus designing a thermal management system is possible. The challenge is transferring the heat from the HPM device to a heat sink. The power density of each shot could be hundreds of megawatts. This heat must be transferred from the HPM beam dump to a sink. The heat transfer must occur at a rate that will support shots in the 10-100Hz range. For HEL systems, in addition to the high intensity, there are substantial system level thermal loads required to provide an 'infinite magazine.' Present models are inadequate to analyze these problems, current systems are unable to sustain the energy dissipation required and the high intensity heat fluxes applied over a very short duration phenomenon is not well understood. These are examples of potential future vehicle integration challenges. This paper addresses these and other subsystems integration challenges using a common currency for vehicle optimization. Exergy, entropy generation minimization, and energy optimization are examples of methodologies that can enable the creation of energy optimized systems. These approaches allow the manipulation of fundamental equations governing thermodynamics, heat transfer, and fluid mechanics to produce minimized irreversibilities at the vehicle, subsystem and device levels using a common currency. Applying these techniques to design for aircraft system-level energy efficiency would identify not only which subsystems arc inefficient but also those that are close to their maximum theoretical efficiency while addressing diverse system interaction and optimal subsystem integration. Such analyses would obviously guide researchers and designers to the areas having the highest payoff and enable departures from the evolutionary process and create a breakthrough design.
机译:航空航天器的设计以进化的方式发展,其中某些离散的变化,例如涡轮发动机代替螺旋桨以提高速度。由于商用飞机的主要部件可以独立优化,因此这种演变对商用飞机非常有效。对于许多需要更综合方法的军事配置而言,情况并非如此。此外,引入没有预先存在的数据库的方面需要特别注意。没有预先存在的数据库的子系统的示例包括定向能量武器(DEW),例如高功率微波(HPM)和高能量激光器(HEL)。这些设备效率低下,因此操作该设备所需的大部分能量都转化为废热,必须传递给合适的散热器。对于HPM,一次“射击”期间的平均热负荷与传统子系统的顺序相同,因此可以设计热管理系统。挑战在于将热量从HPM设备传递到散热器。每次发射的功率密度可能为数百兆瓦。这些热量必须从HPM光束收集器传递到散热器。传热的速率必须能支持10-100Hz范围内的发射。对于HEL系统,除了需要高强度外,还需要大量系统级热负荷才能提供“无限弹匣”。当前的模型不足以分析这些问题,当前的系统无法维持所需的能量耗散,并且对在很短的持续时间现象上施加的高强度热通量也知之甚少。这些是未来潜在的车辆集成挑战的例子。本文使用通用货币对车辆进行优化,从而解决了这些子系统和其他子系统的集成挑战。火用,熵产生最小化和能量优化是可以创建能量优化系统的方法的示例。这些方法允许操纵控制热力学,传热和流体力学的基本方程式,以使用通用货币在车辆,子系统和设备级别产生最小化的不可逆性。将这些技术应用到飞机系统级能效设计中,不仅可以确定哪些子系统效率低下,还可以确定那些子系统接近其最大理论效率,同时解决各种系统交互作用和最佳子系统集成的问题。这样的分析显然会引导研究人员和设计师进入收益最高的领域,并能够脱离进化过程并创造出突破性的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号