首页> 外文会议>2011 30th URSI General Assembly and Scientific Symposium >25 Years of ionospheric modification with Space Shuttle OMS burns
【24h】

25 Years of ionospheric modification with Space Shuttle OMS burns

机译:用航天飞机OMS燃烧25年的电离层改造

获取原文
获取外文期刊封面目录资料

摘要

The Space Shuttle Orbital Maneuver Subsystem (OMS) is the largest engine to be fired in the F-region ionosphere. The OMS thruster provides 10 kg/s of exhaust materials exiting at a speed of 3 km/s. The OMS nozzle can be pointed in the ram, wake or out-of-plane relative to the Space Shuttle orbit. The vector addition of the exhaust velocity and the orbit velocity provides possible injections speeds of between 4.7 and 10.7 km/s. When the exhaust impacts the ionosphere, neutral-ion collisions and ion-molecule charge exchange yields ions moving at hyper-acoustic speeds. A ten second burn of two OMS engines deposits over 1 Giga-Joule of energy into the upper atmosphere. The ionosphere reacts to an OMS burn by exciting a large number of plasma wave modes including the whistler, fast and slow MHD, Alfven, ion acoustic, lower hybrid, and ion Bernstein waves. These waves have been detected by both radar scatter and in situ electric field plasma probes. Field aligned irregularities are produced by the exhaust interactions. The exhaust pickup ions eventually thermalize with the background atmosphere and they recombine with ambient electrons leaving an electron hole. All these phenomena were obtained first in July 1985 during STS-51F and were detected for the next 25 years through STS-129 with 18 flights of the Space Shuttle. These experiments have demonstrated the (1) Space Shuttle OMS burns can change the HF radio propagation characteristics of the F-layer, (2) artificial ionospheric holes may be used to trigger plasma instabilities that scatter radar and possibly affect GPS propagation, (3) space-based electric field sensors can detect OMS burns in the ionosphere for ranges over 400 km, and (4) optical emissions are produced as the pickup ions recombine with F-region electrons. This type of ionospheric modification has been studied with computer models that employ direct simulation Monte Carlo (DSMC) techniques for the neutral exhaust expansion, plasma fluid theory for the p--lasma density effects and kinetic theory with Maxwell's equations for the plasma wave generation.
机译:航天飞机轨道机动子系统(OMS)是F区域电离层中将要发射的最大发动机。 OMS推进器可提供10 kg / s的废气以3 km / s的速度排出。 OMS喷嘴可以相对于航天飞机轨道指向撞锤,尾流或平面外。排气速度和轨道速度的矢量相加提供了介于4.7和10.7 km / s之间的可能的喷射速度。当废气撞击电离层时,中性离子碰撞和离子分子电荷交换产生以超声速运动的离子。两台OMS发动机燃烧10秒钟,将超过1焦耳的能量沉积到高层大气中。电离层通过激发大量等离子波模式(包括吹口哨声,快速和慢速MHD,Alfven,离子声波,低杂波和离子伯恩斯坦波)对OMS燃烧做出反应。这些波已被雷达散射和原位电场等离子体探测器探测到。场相互作用的不规则性是由排气相互作用产生的。排气拾取离子最终在背景大气中热化,并与周围的电子重新结合,留下一个电子空穴。所有这些现象都是1985年7月在STS-51F期间首次获得的,并在随后的25年中通过STS-129进行了18次航天飞机的探测。这些实验证明(1)航天飞机的OMS燃烧会改变F层的HF无线电传播特性;(2)人造电离层孔可用于触发等离子体不稳定性,这些不稳定性会散射雷达并可能影响GPS的传播;(3)天基电场传感器可以检测电离层中超过400 km的OMS燃烧,并且(4)拾取离子与F区电子复合时会产生光发射。已使用计算机模型研究了这种电离层变体,该模型使用直接模拟蒙特卡洛(DSMC)技术进行中性排气膨胀,将等离子流体理论用于p- -- 等离子体波产生的最大密度效应和动力学理论,以及麦克斯韦方程组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号