首页> 外文会议>International Conference on Advanced Ceramics and Composites;ICACC >PLASMA SPRAY-PHYSICAL VAPOR DEPOSITION (PS-PVD) OF CERAMICS FOR PROTECTIVE COATINGS
【24h】

PLASMA SPRAY-PHYSICAL VAPOR DEPOSITION (PS-PVD) OF CERAMICS FOR PROTECTIVE COATINGS

机译:防护涂料用陶瓷的等离子喷涂物理气相沉积(PS-PVD)

获取原文

摘要

In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 m) single layers to be deposited and multilayer coatings of less than 100 m to be generated with the flexibility to tailor microstructures by changing processing conditions. A PS-PVD processing facility has been recently built at the NASA Glenn Research Center and is being applied to the development of advanced coatings for turbine engine hot section components. To develop a basis for understanding the range of processing parameters and the effect on coating microstructure for this new processing capability at NASA GRC, a design-of-experiments was used to deposit coatings of yttria-stabilized zirconia (YSZ) onto NiCrAlY bond coated superalloy substrates to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower deposition rates, but resulted in flatter, more homogeneous thicknesses. The trends identified in this study are being used to improve coating processing control and to guide parameters for tailoring the microstructure of advanced coatings.
机译:为了产生先进的多层热力和环境保护系统,需要一种新的沉积工艺来弥合传统等离子喷涂(其产生相对较厚的涂层,厚度约为125-250微米)与常规气相工艺(例如电子束)之间的差距物理气相沉积(EB-PVD)受相对缓慢的沉积速率,高投资成本和涂料蒸汽压力要求的限制。等离子喷涂-物理气相沉积(PS-PVD)工艺的使用填补了这一空白,并允许沉积薄(<10 m)的单层,并生成小于100 m的多层涂层,并具有通过改变来定制微结构的灵活性处理条件。最近在美国宇航局格伦研究中心建立了PS-PVD处理设备,该设备已用于开发用于涡轮发动机热部件的先进涂料。为了开发了解用于NASA GRC的这种新加工能力的加工参数范围以及对涂层微观结构的影响的基础,设计了一种实验设计,用于将氧化钇稳定的氧化锆(YSZ)涂层沉积到NiCrAlY键合涂层超合金上基板以检查工艺变量(Ar / He等离子气体比例,总等离子气体流量和割炬电流)对腔室压力和割炬功率的影响。对于每组沉积条件,评估涂层的厚度,相和微观结构。较低的腔室压力和较高的功率可增加涂层厚度并创建圆柱状结构。同样,较高的腔室压力和较低的功率会降低沉积速率,但会导致厚度更平坦,更均匀。在这项研究中确定的趋势被用于改善涂层处理控制,并为定制高级涂层的微观结构提供指导参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号