首页> 外文会议>SAE World congress >Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction
【24h】

Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction

机译:柴油机燃料喷雾蒸气渗透/弥散度与局部燃料混合比的关系

获取原文

摘要

The fuel-ambient mixture in vaporized fuel jets produced by liquid sprays is fundamental to the performance and operation of engines. Unfortunately, experimental difficulties limit the direct measurement of local fuel-ambient mixture, inhibiting quantitative assessment of mixing. On the other hand, measurement of global quantities, such as the jet penetration rate, is relatively straightforward. Simplified models to predict local fuel-ambient mixture have also been developed, based on these global parameters. However, experimental data to validate these models over a range of conditions is needed. In the current work, we perform measurements of jet global quantities such as vapor-phase penetration, liquid-phase penetration, spreading angle, and nozzle flow coefficients over a range of conditions in a high-temperature, high-pressure vessel. Using this data and other quantitative mixing measurements performed by Rayleigh scattering in the vaporized portion of the jet, we compare to an existing variable-radial-profile model for prediction of fuel mixture fraction during the steady period of injection. Results show that spreading angles based on measurement of the most sensitive outer boundary of the jet, by schlieren or Rayleigh-scatter imaging, are needed as inputs to the model to obtain a match between modeled and measured fuel jet penetration rates. By adjusting the model (with spreading angle) to match the measured penetration, the model predictions also produce local mixture fractions that are within the Rayleigh scattering experimental uncertainty. Using this same penetration-matching technique, accurate model predictions of mixture fraction are achieved for a range of ambient densities, fuel injector nozzle shapes, injection pressures, and types of fuels. Additionally, extrapolation of the mixing measurements suggests that a fuel spray has a smaller spreading angle in the near-field and transitions to a larger angle in the far-field jet.
机译:由液体喷雾产生的汽化燃料喷嘴中的燃料-环境混合物对发动机的性能和运行至关重要。不幸的是,实验困难限制了对本地燃料-环境混合物的直接测量,从而阻碍了混合的定量评估。另一方面,总体数量(例如射流穿透率)的测量相对简单。基于这些全局参数,还已经开发出用于预测局部燃料-环境混合物的简化模型。但是,需要在一定条件下验证这些模型的实验数据。在当前的工作中,我们在高温高压容器中的一系列条件下执行喷射整体量的测量,例如气相渗透,液相渗透,扩散角和喷嘴流量系数。使用该数据和通过瑞利散射在射流的汽化部分中执行的其他定量混合测量,我们将与现有的可变径向轮廓模型进行比较,以预测稳定喷射期间的燃料混合物分数。结果表明,需要通过基于schlieren或Rayleigh-scatter成像对射流最敏感外边界的测量来扩展角度,作为模型的输入,以在建模和测量的燃料射流穿透率之间取得匹配。通过调整模型(具有扩展角)以匹配测得的穿透力,模型预测还可以产生在瑞利散射实验不确定性范围内的局部混合比。使用这种相同的渗透匹配技术,可以在一定范围的环境密度,燃料喷射器喷嘴形状,喷射压力和燃料类型范围内实现混合物分数的准确模型预测。另外,混合测量的外推表明,燃料喷雾在近场中具有较小的扩散角,而在远场射流中具有较大的扩散角。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号