首页> 外文会议>AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition >Ignition Delay and Time-Resolved Temperature Measurements in Nanosecond Pulse Hydrogen-Air and Ethylene-Air Plasmas at Elevated Initial Temperatures
【24h】

Ignition Delay and Time-Resolved Temperature Measurements in Nanosecond Pulse Hydrogen-Air and Ethylene-Air Plasmas at Elevated Initial Temperatures

机译:在初始温度升高的初始温度下纳秒脉冲氢气和乙烯 - 空气等离子体中的点火延迟和时间分辨温度测量

获取原文

摘要

Ignition time is measured in premixed, preheated hydrogen-air and ethylene-air flows excited by a repetitive nanosecond pulse discharge in a plane-to-plane geometry. ICCD images of the plasma and the flame demonstrate that mild preheating of the fuel-air flow greatly improves plasma stability and precludes filament formation. At the initial temperatures of T_0= 100-200~0 C, hydrogen-air plasmas remain stable and uniform up to at least P=150 torr, and ignition occurs in a large volume. Preheated ethylene-air plasmas appear less uniform. Even at T=200~0 C, ethylene-air ignition begins near the electrode edges, with flame propagating toward the center of the plasma. Ignition time in hydrogen-air and ethylene-air mixtures is measured at initial temperatures of T_0= 100-200~0 C, pressures of P=40-150 torr, equivalence ratios of ¢=0.5-l .2, and pulse repetition rates of v=10-40 kHz. In hydrogen-air, ignition time is reduced as the initial temperature or the pressure of the mixture is increased. At high discharge pulse repetition rates, ignition time is nearly independent of the equivalence ratio. At low pulse repetition rates, near ignition threshold, ignition time in fuel-rich mixtures increases considerably. Ignition time exhibits a minimum at a certain optimum pulse repetition rate, which shifts toward lower values at higher initial temperatures and pressures. In ethylene-air mixture, similar trends are observed, except that ignition time exhibits a weaker dependence on equivalence ratio. Time-resolved N_2(C3~II→B~3FI, v'=0→v"=0) emission spectroscopy is used to measure the temperature in hydrogen-air plasmas. The results show that ignition begins at the plasma temperature of approximately T=700 K, and results in a rapid temperature rise (over ~1 msec). Peak temperature achieved during combustion is T=1600 K. Temperature measured near the electrode edges is essentially the same as in the center of the discharge, within the experimental uncertainty, indicating that the plasma remains uniform through the discharge region. The results of ignition time measurements in hydrogen-air mixtures are compared with predictions of the hydrogen-air plasma chemistry model, showing satisfactory agreement. Plasma temperature measurements at the end of the discharge pulse burst and ignition delay time measurements after the burst demonstrate that ignition at the present conditions is not thermal and is affected by reactions of radical species generated in the plasma, which reduce ignition temperature and shorten ignition delay time.
机译:点火时间在预混的预热,预热的氢气和通过在平面到平面几何形状中进行的重复纳秒脉冲放电激发的乙烯流动。等离子体的ICCD图像和火焰表明燃料空气流动的温和预热大大提高了等离子体稳定性并排除了长丝形成。在T_0 = 100-200〜0℃的初始温度下,氢气等离子体保持稳定并均匀至至少p = 150托,并且在大容积中发生点火。预热的乙烯 - 空气等离子体显得不太均匀。即使在T = 200〜0℃下,乙烯 - 空气点火也会靠近电极边缘,火焰朝向等离子体的中心传播。氢气中的点火时间和乙烯 - 空气混合物在T_0 = 100-200〜0℃的初始温度下测量,P = 40-150托的压力,¢= 0.5-l .2的等效比,和脉冲重复率V = 10-40 kHz。在氢气中,随着初始温度或混合物的压力增加,点火时间降低。在高放电脉冲重复速率下,点火时间几乎与等效比无关。在低脉冲重复率,近点火阈值附近,富含燃料混合物中的点火时间显着增加。点火时间以某种最佳脉冲重复率表现出最小值,其在较高的初始温度和压力下朝向更低的值移动。在乙烯 - 空气混合物中,观察到类似的趋势,不同之处在于点火时间表现出对等效率较弱的依赖性。时间分辨的N_2(C3〜II→B〜3FI,V'= 0→V“= 0)发射光谱用于测量氢气等离子体中的温度。结果表明,点火开始于大约T的等离子体温度开始= 700 k,并导致快速升高(超过1毫秒)。燃烧期间实现的峰值温度是T = 1600k。在实验中,电极边缘附近测量的温度与放电中心的温度基本相同不确定性,表明等离子体通过放电区域保持均匀。与氢气混合物中的点火时间测量结果与氢气等离子体化学模型的预测进行比较,显示出令人满意的协议。放电结束时的等离子体温度测量脉冲突发和点火延迟时间测量在突发后证明当前条件的点火不是热的,并且受等离子体中产生的根本物种的反应影响,这减少了Ignitio n温度和缩短点火延迟时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号