首页> 外文会议>IAC;International Astronautical Congress >DERIVATION OF A COMPLETE SET OF EQUATIONS OF MOTION FOR COUPLED SLOSH-VEHICLE DYNAMICS
【24h】

DERIVATION OF A COMPLETE SET OF EQUATIONS OF MOTION FOR COUPLED SLOSH-VEHICLE DYNAMICS

机译:耦合的动力学方程组的完整运动方程组的推导

获取原文

摘要

Equations governing motion of space vehicles must address several subsystems. They include dynamics, control,and guidance subsystems. Dynamics subsystem itself is governed by rigid body, elasticity, and slosh dynamicsequations. Dynamics equations have been derived by many researchers using different levels of simplifications. Forexample, equations of motion for elastic vehicles in 6-DoF flight were derived earlier neglecting the effect ofpropellant sloshing. Coupled slosh-rigid body dynamics in planar flight was investigated too, but effect of elasticitywas not incorporated and extension of equations to 6-DoF flight is not straightforward as well. In current study, anew contribution in deriving dynamics equations for 6-DoF flight is made by considering three effects of slosh,elasticity, and rigid body dynamics altogether. Classically, liquid sloshing is modelled by replacing liquid in eachtank with a fixed and several oscillatory masses representing slosh modes. In our work, slosh dynamics wasmodelled by a series of spherical pendulums instead of simple pendulums which are valid just in planar motion andsmall amplitude slosh oscillations (linear slosh). Equations are derived in body frame using two methods. First, weused Lagrange equation in inertial frame and transformed resultant equations into body frame. Alternatively,Lagrange equation in terms of quasi-coordinates, also called Boltzmann-Hamel equation, was utilized and same setof equations were obtained in both cases. In next stage, as a validation of our results, we simplified our equationswith the assumptions used in previous works and obtained the same set of equations available in literature. Thederived set of equations is capable of modelling non-linear slosh dynamics and also non-linear interactions betweenall dynamics subsystems in a 6-DoF vehicle flight.
机译:控制航天器运动的方程式必须涉及多个子系统。它们包括动力,控制, 和制导子系统。动力学子系统本身由刚体,弹性和晃荡动力学控制 方程。许多研究人员使用不同程度的简化方法得出了动力学方程。为了 例如,早于6自由度飞行的弹性飞行器的运动方程忽略了 推进剂晃动。还研究了平面飞行中的刚体耦合动力学,但是对弹性有影响 并没有将方程扩展到6自由度飞行也不是那么简单。在目前的研究中, 考虑到晃动的三种影响,在推导6自由度飞行动力学方程式方面做出了新的贡献, 弹性和刚体动力学。传统上,液体晃荡是通过替换每个液体中的液体来建模的 固定和几个振荡质量代表晃荡模式的坦克。在我们的工作中,晃动动力学是 由一系列球形摆而不是仅在平面运动中有效的简单摆建模 小幅度的晃荡振荡(线性晃荡)。方程是使用两种方法在人体框架中导出的。首先,我们 在惯性系中使用拉格朗日方程,并将结果方程转换为体架。或者, 利用准坐标方面的Lagrange方程,也称为Boltzmann-Hamel方程,并且使用相同的集合 在这两种情况下均获得了方程组。在下一阶段,为验证我们的结果,我们简化了方程式 与先前工作中使用的假设并获得了文献中可用的相同方程组。这 派生的方程组能够对非线性晃动动力学以及模型之间的非线性相互作用进行建模 6自由度飞行中的所有动力学子系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号