首页> 外文会议>IAC;International Astronautical Congress >IN-ORBIT IDENTIFICATION OF MOMENT OF INERTIA MATRIX FOR HIGH POINTING SATELLITES
【24h】

IN-ORBIT IDENTIFICATION OF MOMENT OF INERTIA MATRIX FOR HIGH POINTING SATELLITES

机译:高点卫星惯性矩的在轨识别

获取原文

摘要

The Remote Sensing class of spacecraft requires high pointing control, stability and fastmaneuvers for the various remote sensing/science payloads. During different mission phases, severalAttitude Control System and fault detection algorithms onboard the spacecraft require accurate knowledgeof the spacecraft 3-by-3 inertia matrix. Before launch, the inertia matrix of the spacecraft is estimated byadding together the moments of inertia of the individual components of the spacecraft. The moments ofinertia of individual components are computed with respect to the predicted center of mass of the overallspacecraft before being summed. During the mission life the Spacecraft inertia changes due to fueldepletion. It necessitates estimating inertia accurately using on-orbit data. This paper details the ExtendedKalman filter based inertia matrix estimation algorithm formulation, design, analysis and simulation results.The spacecraft is in closed loop controlled mode and the desired sinusoidal three axis persistent torqueexcitation is provided by selecting appropriate reference rates. The three axes computed control torque(realized using reaction wheels) and gyro measured spacecraft rates are used as the inputs for the algorithm.The algorithm estimates the diagonal inertia elements to an accuracy of 1.5% of actual values. Extensivesimulation studies show that estimated inertia is the actual inertia plus the contribution due to the constantwheel torque scale factor. It is proposed not to compensate for the wheel torque scale factor in theestimation algorithm. Since the estimated inertia is used in the feed forward torque computation, the extratorque component gets nullified by wheel scale factor and the desired feed forward torque will be realizedon the Spacecraft. A case study was done for Cartosat-2 mission which is a high resolution earth imagingsatellite providing better than one meter panchromatic imaging capability using 2.5m camera. Considerablereduction in targeting errors was observed on up linking the estimated inertia by the proposed algorithm forfeed forward torque computation.
机译:遥感类航天器需要高指向控制,稳定性和快速性 各种遥感/科学有效载荷的演习。在不同的任务阶段, 航天器上的姿态控制系统和故障检测算法需要准确的知识 3乘3惯性矩阵在发射之前,航天器的惯性矩阵由下式估算: 将航天器各个组件的惯性矩加在一起。的时刻 相对于整体的预测质心计算单个组件的惯性 总和之前的宇宙飞船。在飞行任务期间,航天器的惯性因燃料而改变 消耗。它需要使用在轨数据准确地估计惯性。本文详细介绍了扩展 基于卡尔曼滤波器的惯性矩阵估计算法的公式化,设计,分析和仿真结果。 航天器处于闭环控制模式,期望的正弦三轴持续扭矩 通过选择适当的参考速率来提供激励。三轴计算控制转矩 (使用反作用轮实现)和陀螺仪测得的航天器速率用作算法的输入。 该算法估计对角惯性元素的精度为实际值的1.5%。广泛的 仿真研究表明,估计惯量是实际惯量加上常数引起的贡献。 车轮扭矩比例因子。建议不补偿车轮扭矩比例系数。 估计算法。由于估算的惯量用于前馈扭矩计算,因此额外的 车轮比例系数使扭矩分量无效,并且将实现所需的前馈扭矩 在航天器上。为高分辨率的地球成像Cartosat-2任务进行了案例研究 使用2.5m摄像头可提供优于一米的全色成像能力的卫星。大量 通过将所提出的算法用于估计惯性的上行链接,可以观察到瞄准误差的减少 前馈扭矩计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号