首页> 外文会议>AOMATT 2010;International symposium on advanced optical manufacturing and testing technologies >Effect of triplet energy and transporting property of electron transporting material on iridium complex yellow phosphorescent organic light-emitting devices
【24h】

Effect of triplet energy and transporting property of electron transporting material on iridium complex yellow phosphorescent organic light-emitting devices

机译:三重态能量和电子传输材料的传输性能对铱配合物黄色磷光有机发光器件的影响

获取原文

摘要

Balanced charge carrier and appropriate exciton confinement are considered as the key factors for the realization of highly efficient and stable organic light-emitting devices (OLEDs). An effective way to reach a loss free hole-electron recombination and exciton leakage is to use suitable electron transporting layers (ETLs). To investigate the influence of triplet energy and electron transporting properties of ETLs on the performance of iridium complex yellow phosphorescent OLEDs, we fabricated three devices based on bis[2-(4-tert-butylphenyl)benzothiazolato-N,C2']iridium (acetylacetonate) [(t-bt)_2Ir(acac)] doped 4,4'-bis(carbazol-9-yl) biphenyl (CBP) host by using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), l,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi), and 4,7-diphyenyl-l,10-phenanthroline (BPhen) as ETLs, respectively. It was found that there was no apparent correlation between the device efficiency and the triplet energy of ETLs. Instead, device efficiency was determined by the electron mobility of ETLs only. With an optimized device using BPhen as ETL, a power efficiency of 23.1 lm/W and a current efficiency of 28.0 cd/A at 0.08 mA/cm2 were achieved, which was much higher than that of the control devices (7.5 lm/W for BCP-device and 8.5 lm/W for TPBi-device). The improved efficiency was attributed to that BPhen had the highest electron mobility and provided better charge balance in the hole-dominant devices. Moreover, the EL spectra of three devices showed no obvious difference with a light emission from iridium complex peaked at 562 nm and a shoulder peak at 600 nm. This indicated that no matter BCP, TPBi or BPhen acted as ETLs, the (t-bt)_2Ir(acac) triplet exciton can be confined within the emissive layer effectively.
机译:平衡的载流子和适当的激子限制被认为是实现高效,稳定的有机发光器件(OLED)的关键因素。实现无损空穴电子复合和激子泄漏的有效方法是使用合适的电子传输层(ETL)。为了研究ETL的三重态能量和电子传输特性对铱络合黄色磷光OLED的性能的影响,我们制造了基于双[2-(4-叔丁基苯基)苯并噻唑并-N,C2'](乙酰丙酮化)铱的三种器件)通过使用2,9-二甲基-4,7-二苯基-1,10-菲咯啉掺杂[(t-bt)_2Ir(acac)]掺杂4,4'-双(咔唑-9-基)联苯(CBP)主体(BCP),1,3,5-三(N-苯基苯并咪唑-2-基)苯(TPBi)和4,7-二噻吩基-1,10-菲咯啉(BPhen)作为ETL。发现在器件效率和ETL的三重态能量之间没有明显的相关性。相反,器件效率仅由ETL的电子迁移率决定。通过使用BPhen作为ETL的优化设备,在0.08 mA / cm2的功率效率下,实现了23.1 lm / W的功率效率和28.0 cd / A的电流效率,这远远高于控制设备的功率效率(对于7.5 lm / W, BCP设备和TPBi设备为8.5 lm / W)。效率的提高归因于BPhen具有最高的电子迁移率,并在空穴占优势的器件中提供了更好的电荷平衡。此外,三种器件的EL光谱没有明显差异,铱络合物的发光峰值在562nm,肩峰在600nm。这表明无论BCP,TPBi或BPhen作为ETL,(t-bt)_2Ir(acac)三重态激子都可以有效地限制在发射层内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号