首页> 外文会议>North American Thermal Analysis Society conference >A NEW ISOCONVERSIONAL HYPOTHESIS AND KINETIC FREE METHOD
【24h】

A NEW ISOCONVERSIONAL HYPOTHESIS AND KINETIC FREE METHOD

机译:新的异组反转假设和动力学方法

获取原文
获取外文期刊封面目录资料

摘要

Kissinger method was the first kinetic free method based on differential thermal analysis (DTA) data, applying heat transfer differential partial equation to the heat which is transferred to or from a sample in a DTA cell, allied to Arrhenius equation. It is still applied also to curve data obtained by derivative thermogravimetry (DTG) and/or by differential scanning calorimetry (DSC). By this method the activation energy (Ea) can be obtained from at least three constant heating rate (?) curve data, plotting respective values of In (?.Tm-2) versus Tm-1, where Tm is the temperature of maximum transformation rate, which corresponds to the temperature of the maximum or minimum of the considered DTA, DTG or DSC peak. From the plot angular coefficients equal to -Ea. R-1, the respective Ea value is calculated, where R the Universal Gas Constant. It must be noted that, as Kissinger method assumes a constant Ea value during the entire transformation peak and this rarely occurs, currently it is used to have the mean activation energy of a selected transformation peak, which allow a fast evaluation when many transformation peaks occur. As the activation energy is a function of the conversion degree of a transformation, due to the fact that kinetic mechanisms are function of the conversion degree, except for zero order transformations, other thermal Analysts beginning by Ozawa and Flynn-Wall, developed the so called isoconversional free kinetic methods, based on the fact that, if the sample is the same, at a same conversion degree, the activation energy of a transformation is the same, independently of the heating rate. Thus, all the kinetic free methods which were developed afterwards, were mostly applied to same ? conversion degree thermogravimetric data, because, independently of the complexity of the function of the kinetic model, its value is constant when comparing data of different heating rates at same ?. The main differences consist on the admitted kinetic model and hypothesis used to proceed the integration of the differential Arrhenius equation, expressed in terms of the specific kinetic model function. Thus, depending on each admitted hypothesis, for each considered ? conversion degree, when there is an effective correlation, straight lines of In ?, ln(?.T?-1) or ln(?.T?-2) versus T?-lare obtained, from which the values of E? are obtained, as in Kissinger method. The present developed isoconversional hypothesis and kinetics free method uses directly the Arrhenius equation in its differential equation expression, as a function of the used heating rate and other experimental parameters that can be directly measured from respective TG and DTG curve data, obtained at different heating rates. Without using any integration method or assuming any hypothesis or kinetic model, but only using thermal analysis measured parameter data, the method was applied to the same example of the standard isoconversional ASTM 1641-16 kinetic method, showing very compatible results of activation energies. It was also applied to estimate the activation energies of an oil sample at different conversion degrees, when heated in inert atmosphere, obtaining very similar values to those calculated by three other conventional and well known isoconversional methods, using the above correlations.
机译:基辛格方法是基于差分热分析(DTA)数据的第一种动力学方法,将传热差分部分方程施加到热量转移到DTA细胞中的样品中的热量,与Arhenius方程相结合。它还仍然应用于通过衍生热重量(DTG)和/或通过差示扫描量热法(DSC)获得的曲线数据。通过该方法,激活能量(EA)可以从至少三个恒定的加热速率(Δ)曲线数据获得,绘制相应的(Δω-2)与TM-1的相应值,其中Tm是最大变换的温度速率,对应于所考虑的DTA,DTG或DSC峰的最大值或最小的温度。从绘图角系数等于-ea。 R-1,计算相应的EA值,其中载体恒定。必须注意的是,作为基辛格方法在整个变换峰期间假设恒定的EA值,并且这很少发生,目前它用于具有所选择的变换峰的平均激活能量,当发生许多变换峰时,允许快速评估。由于活化能量是转换的转换程度的函数,因为动力机制是转换程度的功能,除零阶变换外,由Ozawa和Flynn-Wall开始的其他热分析师开发了所谓的基于这样的事实,如果样品相同,则在相同的转换程度下,改变的激活能量独立于加热速率的情况。因此,之后开发的所有动力学方法大多施加到相同?转换度热重复数据,因为,独立于动力学模型的功能的复杂性,当相同加热速率的数据时,其值是恒定的?。主要差异包括在录取的动力学模型和假设上,用于进行差分Arhenius方程的集成,以特定的动态模型功能表示。因此,根据每个承认的假设,每次考虑?转换程度,当存在有效的相关性时,IN的直线?,LN(t?-1)或ln(?。t?-2)与tα-lare,从中获得e?如Kissinger方法获得。本出现的异组非典型假设和动力学自由方法在其微分方程表达中直接使用arrhenius方程,作为使用的使用加热速率和其他可以从各自的Tg和dtg曲线数据中获得的其他实验参数,以不同的加热速率获得。而无需使用任何积分法或假设任何假说或动力学模型,但仅使用热分析测量的参数数据,所述方法被应用到标准等转化率ASTM 1641年至1616年动力学方法相同的例子中,示出了活化能非常相容的结果。当在惰性气氛中加热时,它也应用于在不同转化度下估计油样的激活能量,以使用上述相关性地获得由三种其他常规和众所周知的异组方法计算的那些值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号