首页> 外文会议>3rd Electronic System-Integration Technology Conference >Analysis of thermomechanically related failures of traction IGBT power modules at short circuit switching
【24h】

Analysis of thermomechanically related failures of traction IGBT power modules at short circuit switching

机译:牵引式IGBT功率模块短路切换时与热机械相关的故障分析

获取原文
获取外文期刊封面目录资料

摘要

Reliability issues of IGBT power inverters for multi-kilowatt traction motor drivers are investigated. Due to high power loss densities and different material properties any operation of the switching module is connected to internal stress. These forces are known as main causes of thermo mechanical fatigue. For lifetime estimations power and thermal cycling test methods have been established. However, in switching operations extremely high power loss peaks occur particularly under short circuit conditions. These switch losses can be up to 200 times higher compared to normal operation condition. Although, the switching modules withstand even repeated short circuit switching in the regular case, testing and investigating of the devices is usually not done under these extreme conditions. In order to identify weak points we measured the losses at distinct real operation conditions (normal operation, short circuit with medium inductive load, and short circuit with low inductive load) and investigated temperature distributions and mechanical stress/strain distributions in a typical package using the finite element method. Von Mises stress and strain distributions due to thermal expansion were calculated under quasi-static and pulse load conditions. According to our findings the highest strain levels are caused by pulse load operation at the interface between the bonding wire of the gate and the die, and in the solder interface layer between the die and the upper copper metallization. Their meaning for aging processes and reliability relevant material degradation is also discussed.
机译:研究了用于多千瓦牵引电动机驱动器的IGBT功率逆变器的可靠性问题。由于高功率损耗密度和不同的材料特性,开关模块的任何操作都与内部应力有关。这些力被称为热机械疲劳的主要原因。为了估计寿命,已经建立了功率和热循环测试方法。但是,在开关操作中,特别是在短路条件下,会出现极高的功率损耗峰值。与正常工作条件相比,这些开关损耗可能高达200倍。尽管开关模块在正常情况下甚至可以承受反复的短路开关,但是通常不会在这些极端条件下对设备进行测试和研究。为了确定薄弱点,我们在不同的实际工作条件下(正常工作,中等感应负载的短路和低感应负载的短路)测量了损耗,并使用以下方法研究了典型封装中的温度分布和机械应力/应变分布。有限元法。在准静态和脉冲负载条件下,计算了由于热膨胀引起的冯·米塞斯应力和应变分布。根据我们的发现,最高应变水平是由脉冲负载操作导致的,该脉冲负载操作在栅极和管芯的键合线之间的界面以及管芯与上层铜金属化层之间的焊料界面层中产生。还讨论了它们对于老化过程和与可靠性相关的材料退化的含义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号