首页> 外文会议>International conference on nuclear engineering;ICONE-16 >FLUID FLOW ANALYSIS IN A PEBBLE BED MODULAR REACTOR USING RANS TURBULENCE MODELS
【24h】

FLUID FLOW ANALYSIS IN A PEBBLE BED MODULAR REACTOR USING RANS TURBULENCE MODELS

机译:基于湍流模型的卵床模块化反应器的流动分析。

获取原文

摘要

The computational fluid dynamics code FLUENT has been used to analyze turbulent fluid flow over pebbles in a pebble bed modular reactor. The objective of the analysis is to evaluate the capability of the various RANS turbulence models to predict mean velocities, turbulent kinetic energy, and turbulence intensity inside the bed. The code was run using three RANS turbulence models: standard k-ε, standard k-ω and the Reynolds stress turbulence models at turbulent Reynolds numbers, corresponding to normal operation of the reactor. For the k-ε turbulence model, the analyses were performed at a range of Reynolds numbers between 1300 and 22 000 based on the approach velocity and the sphere diameter of 6 cm. Predictions of the mean velocities, turbulent kinetic energy, and turbulence intensity for the three models are compared at the Reynolds number of 5500 for all the RANS models analyzed. A unit-cell approach is used and the fluid flow domain consists of three unit cells. The packing of the pebbles is an orthorhombic arrangement consisting of seven layers of pebbles with the mean flow parallel to the z-axis. For each Reynolds number analyzed, the velocity is observed to accelerate to twice the inlet velocity within the pebble bed. From the velocity contours, it can be seen that the flow appears to have reached an asymptotic behavior by the end of the first unit cell. The velocity vectors for the standard k-ε and the Reynolds stress model show similar patterns for the Reynolds number analyzed. For the standard k-ω, the vectors are different from the other two. Secondary flow structures are observed for the standard k-ω after the flow passes through the gap between spheres. This feature is not observable in the case of both the standard k-ε and the RSM. Analysis of the turbulent kinetic energy contours shows that there is higher turbulence kinetic energy near the inlet thaninside the bed. As the Reynolds number increases, kinetic energy inside the bed increases. The turbulent kinetic energy values obtained for the standard k-e and the RSM are similar, showing maximum turbulence kinetic energy of 7.5 m~2.s~(-2), whereas the standard k-co shows a maximum of about 20 m~2.s~(-2) . Another observation is that the turbulence intensity is spread throughout the flow domain for the k-e and RSM whereas for the k-ω, the intensity is concentrated at the front of the second sphere. Preliminary analysis performed for the pressure drop using the standard k-ε model for various velocities show that the dependence of pressure on velocity varies as V~(1.76).
机译:计算流体动力学代码FLUENT已用于分析卵石床模块化反应器中卵石上的湍流。分析的目的是评估各种RANS湍流模型预测床内平均速度,湍动能和湍流强度的能力。该代码使用三个RANS湍流模型运行:标准k-ε,标准k-ω和雷诺数为湍流的雷诺应力湍流模型,对应于反应堆的正常运行。对于k-ε湍流模型,基于进近速度和6 cm的球体直径,在1300至22000的雷诺数范围内进行了分析。对于所有分析的RANS模型,在5500的雷诺数下比较了这三个模型的平均速度,湍动能和湍流强度的预测。使用了单位单元方法,流体流动域由三个单位单元组成。卵石的堆积是正交排列,由七层卵石组成,平均流量平行于z轴。对于每个分析的雷诺数,观察到的速度都加速到卵石床内入口速度的两倍。从速度等值线可以看出,在第一个单位像元的末尾,流动似乎已经达到了渐近行为。标准k-ε和雷诺应力模型的速度矢量显示出相似的模式,用于分析雷诺数。对于标准k-ω,向量与其他两个向量不同。流体通过球体之间的间隙后,可观察到标准k-ω的二级流结构。在标准k-ε和RSM情况下都无法观察到此功能。对湍流动能轮廓的分析表明,入口附近的湍流动能比进气口的湍流动能高。 在床上随着雷诺数增加,床内动能增加。标准ke和RSM的湍流动能值相似,最大湍动能为7.5 m〜2.s〜(-2),而标准k-co的最大值为约20 m〜2。 s〜(-2)。另一个观察结果是,对于k-e和RSM,湍流强度分布在整个流域中,而对于k-ω,湍流强度集中在第二球体的前部。使用标准k-ε模型对各种速度进行的压降初步分析表明,压力对速度的依赖性随V〜(1.76)的变化而变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号