首页> 外文会议>American Society for Composites technical conference >Micromechanical Modeling of Thermo-oxidative Degradation of High Temperature Polymer Matrix ComPosites
【24h】

Micromechanical Modeling of Thermo-oxidative Degradation of High Temperature Polymer Matrix ComPosites

机译:高温聚合物基复合材料热氧化降解的微观力学建模

获取原文

摘要

In this paper, oxidation of the polymer in a polymer matrix composite (PMC) used in high temperature applications is modeled using a modified Fick's law of diffusion that includes a reaction term related to the rate of oxygen consumption due to the chemical reaction between the polymer and oxygen. The model incorporates the coupling between oxygen diffusion and polymer consumption process and the resulting shrinkage at the micro-scale. It is conjectured that polymer shrinkage due to thermal oxidation may be responsible for debond to initiate and propagate along fiber-matrix interface, thereby allowing accelerated diffusion and further oxidation. In order to simulate this effect, a cohesive layer model was introduced at the interface of the polymer and fiber within the framework of finite element analysis (FEA) of a micromechanical representative volume element (RVE). Our numerical results indicate that oxygen diffusion at high temperature causes oxidation in the polymer, which indeed leads to thermo-oxidative shrinkage of the polymer that is responsible for the initiation and propagation of fiber/matrix interfacial failure at high temperatures.The results from the micro-scale FEA/RVE model were subsequently incorporated in a macro-scale laminate model through multi-scale modeling, using continuum damage mechanics. In this paper, details of the multi-scale simulation will be presented, together with some preliminary experimental data for model verification, in order to gain insight into the anisotropic nature of the thermo-oxidative degradation process and to predict its effect on long-term structural durability.
机译:在本文中,使用修正的Fick扩散定律对高温应用中使用的聚合物基复合材料(PMC)中的聚合物氧化进行建模,该扩散定律包括与由于聚合物之间的化学反应而导致的耗氧率相关的反应项和氧气。该模型结合了氧气扩散和聚合物消耗过程之间的耦合以及由此产生的微观尺度上的收缩。据推测,由于热氧化引起的聚合物收缩可能是造成脱键作用的开始和沿着纤维-基质界面的传播,从而加速了扩散和进一步的氧化。为了模拟这种效果,在微机械代表体积元素(RVE)的有限元分析(FEA)框架内,在聚合物和纤维的界面处引入了内聚层模型。我们的数值结果表明,高温下的氧扩散会引起聚合物中的氧化,的确导致聚合物的热氧化收缩,这是高温下纤维/基体界面破坏的引发和扩散的原因。 随后,使用连续损伤机制,通过多尺度建模将微观尺度FEA / RVE模型的结果合并到宏观层压板模型中。在本文中,将提供多尺度模拟的详细信息以及一些用于模型验证的初步实验数据,以深入了解热氧化降解过程的各向异性并预测其对长期氧化的影响。结构耐久性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号