首页> 外文会议>ASME turbo expo >A NON-DIMENSIONAL QUASI-3D BLADE DESIGN APPROACH WITH RESPECT TO AERODYNAMIC CRITERIA
【24h】

A NON-DIMENSIONAL QUASI-3D BLADE DESIGN APPROACH WITH RESPECT TO AERODYNAMIC CRITERIA

机译:关于气动标准的无量纲拟3D叶片设计方法

获取原文

摘要

The competition between aero-engine manufacturers has increased dramatically in the last decades. Saving computational time within the design process, which is equivalent to saving money, is of major importance for the industry. Talking about the aerodynamic compressor blading process, it becomes indispensable to go for new or alternative ways in designing blades in order to fulfill raised performance demands.The focus of this paper, therefore, is to propose a quasi-3D aerodynamic design concept with extended and improved parameterization of the aerofoil in order to support the industrial blading process. A Bezier-surface is selected to parameterize the non-dimensional camber-line angle distribution along the blade chord from leading to trailing edge over the entire blade height in radial direction. Starting from scratch, the geometric blade build-up is completed by superposing the resulting camber-line with a given thickness distribution. For additional increase of design freedom, Bezier-curves are used to radially parameterize blade inlet and outlet angles in their dimensionless form. The chosen parameterization of these distributions guarantees smooth blade shapes and geometry distributions with a minimum of design parameters.For optimization purpose it is essential to get performance information on the entire blade, however, with minimal computational effort. Facing this challenge, aerodynamic blade performance is evaluated by a two-dimensional blade-to-blade flow solver for specific sections on different radial blade heights. In order to speed up the blade design process, the flow calculations are realized by a distributed computing concept on a Linux high-performance cluster. All investigations are carried out for highly loaded controlled diffusion blades which are taken from an existing industrial research application. Since selected criteria such as meanloss at design point conditions and working range for off-design flow conditions represent contradicting design goals, the blade design problem is solved by means of a multi-objective problem formulation and a stochastic optimization algorithm. As a result Pareto-optimal trade-off solutions between conflicting design goals are shown where the design engineer can choose from according to his specific preferences.
机译:过去几十年来,航空发动机制造商之间的竞争急剧增加。在设计过程中节省计算时间,这相当于节省资金,对业界至关重要。谈到空气动力学压缩机的叶片加工过程,在设计叶片时必须采用新的或替代的方法来满足提高的性能要求,这是必不可少的。 因此,本文的重点是提出一种具有扩展和改进的翼型参数化的准3D空气动力学设计概念,以支持工业叶片过程。选择贝塞尔曲面以参数化沿叶片弦从前缘到后缘在叶片整个径向上沿叶片弦的无量纲弧线角度分布。从头开始,通过将所得的外倾线与给定的厚度分布重叠来完成几何叶片的建立。为了进一步增加设计自由度,贝塞尔曲线用于以无量纲形式径向设置叶片进口和出口角度的参数。这些分布的选定参数设置可确保使用最少的设计参数即可实现平滑的叶片形状和几何形状分布。 出于优化目的,以最少的计算量获取整个刀片上的性能信息是必不可少的。面对这一挑战,通过二维叶片到叶片流动求解器针对不同径向叶片高度上的特定截面来评估气动叶片的性能。为了加快刀片服务器的设计过程,在Linux高性能群集上通过分布式计算概念来实现流量计算。所有研究都是针对从现有工业研究应用中获得的高负载可控扩散叶片进行的。由于选择的标准(例如均值) 在设计点条件和非设计流量条件下的工作范围内的损耗表示矛盾的设计目标,通过多目标问题表述和随机优化算法解决了叶片设计问题。结果,显示了冲突的设计目标之间的Pareto最优权衡解决方案,设计工程师可以根据自己的具体偏好进行选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号