首页> 外文会议>58th International Astronautical Congress 2007 >BEM-FEM ACOUSTIC-STRUCTURAL COUPLING FOR SPACECRAFT STRUCTURE INCORPORATING TREATMENT OF IRREGULAR FREQUENCIES
【24h】

BEM-FEM ACOUSTIC-STRUCTURAL COUPLING FOR SPACECRAFT STRUCTURE INCORPORATING TREATMENT OF IRREGULAR FREQUENCIES

机译:BEM-FEM声固耦合用于不规则频率空间融合结构的热处理

获取原文
获取外文期刊封面目录资料

摘要

Acoustic disturbances and the resulting structural vibration is a very significant problem in aerospace engineering. The magnitude of the acoustic loads transmitted to the payload is a function of the external acoustic environment as well as the design of the spacecraft structure and its sound absorbing treatments. The high intensity acoustic fields produced during a launch of a Space Shuttle or an Expendable Launch Vehicle (ELV) can easily damage a spacecraft's mission critical flight hardware, such as its avionics, antennas, solar panels and optical instruments. The loads transmitted to the spacecraft structure from the launch vehicle (LV) in the first few minutes of flight are far more severe than any load that a payload experiences on orbit. The severity of the environment affects the design for withstanding higher launch loads, hence the cost of placing the payload into orbit. With such motivation and following earlier work, structural-acoustic interaction is modeled and analyzed using boundary and finite element coupling. The analysis is founded on the idealization of the problem into three parts; the calculation of the acoustic radiation from the vibrating structure, the finite element fonvulation of structural dynamic problem, and the calculation of the acousto-elasto-mechanic fluid-structure coupling using coupled BEM/FEM techniques. The computational scheme developed for the calculation of the acoustic radiation as well as the structural dynamic response of the structure using coupled BEM/FEM has given satisfactory results for acoustic disturbance in the low frequency range, which was the range of particular interest in many practical applications. However, for larger frequency range, it is well known that while the solution to the original boundary value problem in the exterior domain to the boundary is perfectly unique for all wave numbers, this is not the case for the numerical treatment of integral equation formulation, which breaks down at certain frequencies known as irregular frequencies or fictitious frequencies. Although such phenomenon is completely nonphysical since there are no discrete eigenvalues for the exterior problems, a method known as CHIEF (Combined Helmholtz Interior integral Equation Formulation) can be utilized to overcome such problem. Applications of CHIEF method to spherical shell geometry has given excellent results.
机译:在航空航天工程中,声学干扰和由此产生的结构振动是一个非常重要的问题。传输到有效载荷的声负载的大小是外部声环境以及航天器结构及其吸声处理设计的函数。航天飞机或消耗性运载工具(ELV)发射期间产生的高强度声场,很容易损坏航天器的关键任务飞行硬件,例如其航空电子设备,天线,太阳能电池板和光学仪器。在飞行的最初几分钟内,从运载火箭(LV)传递到航天器结构的载荷要比有效载荷在轨道上经历的任何载荷都要严重得多。环境的严重性会影响承受更高发射载荷的设计,因此会影响将有效载荷送入轨道的成本。有了这样的动力并遵循早期的工作,使用边界和有限元耦合对结构-声学相互作用进行建模和分析。该分析基于将问题理想化为三个部分。振动结构的声辐射计算,结构动力问题的有限元形式化以及使用耦合的BEM / FEM技术计算声-弹-机械流固耦合。为使用耦合BEM / FEM计算声辐射以及结构的结构动力响应而开发的计算方案已为低频范围的声干扰提供了令人满意的结果,这是许多实际应用中特别关注的范围。但是,对于较大的频率范围,众所周知,尽管对于所有波数,边界外域中原始边界值问题的解决方案都是唯一的,但积分方程公式的数值处理却并非如此,它会在某些频率(称为不规则频率或虚拟频率)处崩溃。尽管由于没有外部问题的离散特征值,所以这种现象是完全非物理的,但是可以使用一种称为CHIEF(联合亥姆霍兹内部积分方程式)的方法来克服这种问题。 CHIEF方法在球壳几何中的应用取得了极好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号