首页> 外文会议>58th International Astronautical Congress 2007 >ATTITUDE MANEUVERING OF PICO-SATELLITES BASED ON RECONFIGURABLE INTELLIGENT CONTROLS
【24h】

ATTITUDE MANEUVERING OF PICO-SATELLITES BASED ON RECONFIGURABLE INTELLIGENT CONTROLS

机译:基于可重构智能控制的微型卫星姿态机动

获取原文

摘要

Pico-satellites represent the next logical step in the evolution of capable, low-cost satellite systems. Since these satellites are very small (less than 1 kg), they pose unique engineering challenges. Due to tight mass, size, and power restrictions, the attitude control of picosatellites is generally done by magnetic torquers. Reaction/momentum wheels are still under development to satisfy the mass and power requirements. As a consequence, attitude accuracy of picosatellites obtained is relatively low on the order of 10 degree. Typical missions involving imaging/remote sensing, in general, require high attitude accuracy on the order of 100th of a degree. Furthermore, in the cases of failures of attitude sensors and/or actuators, the satellite attitude drifts leading to loss of mission. In this paper, a reconfigurable intelligent attitude control system is proposed. The satellite may become dysfunctional due to the sensor/actuator failures. To overcome this problem and to ensure high fidelity, multiple sensors and actuators are implemented introducing high redundancy in the system which leads to increase in weight and power budget of the spacecraft. For the picosatellites where the tight mass and the low power restrictions are posed, implementing redundancy in sensors and actuators will increase the mass and the power requirements. In this paper, we suggest a novel approach based on reconfigurable controls. When an actuator/sensor fails, the attitude control capability reconfiguration is required. This demands that the control strategy must be adaptive to take care of the possible failures. This complicates the whole control design process besides making the system complicated. An intelligent control methodology based on neuro-fuzzy control is suggested in this paper. A fuzzy state noise driven extended Kalman filter based learning in dynamic neural network has been developed to provide highly adaptive and accurate neural control in real time. The dynamic neural network may not converge fast when using the backpropagation based learning scheme. Numerous literatures exist proving the superiority of extended Kalman filter based learning where in artificial noise is injected to ensure the positive definiteness of the state covariance matrix. However, because of finite precision, round-off errors and uncertainty in the a priori state covariance, filter may diverge or the convergence may be poor.
机译:微型卫星代表了功能强大的低成本卫星系统发展中的下一个逻辑步骤。由于这些卫星非常小(小于1千克),因此它们带来了独特的工程挑战。由于严格的质量,尺寸和功率限制,微卫星的姿态控制通常由电磁转矩控制器完成。反作用/动量轮仍在开发中,以满足质量和功率的要求。结果,所获得的微卫星的姿态精度相对较低,约为10度。通常,涉及成像/远程感测的典型任务需要大约百分之一度的高姿态精度。此外,在姿态传感器和/或执行器发生故障的情况下,卫星姿态会漂移,从而导致无法执行任务。本文提出了一种可重构的智能姿态控制系统。由于传感器/执行器故障,卫星可能会失灵。为了克服该问题并确保高保真度,实现了多个传感器和致动器,从而在系统中引入了高冗余度,这导致了航天器的重量和功率预算的增加。对于具有严格质量和低功率限制的微卫星,在传感器和执行器中实现冗余将增加质量和功率要求。在本文中,我们提出了一种基于可重配置控件的新颖方法。当执行器/传感器发生故障时,需要重新配置姿态控制功能。这就要求控制策略必须适应性地处理可能的故障。除了使系统复杂之外,这还使整个控制设计过程变得复杂。本文提出了一种基于神经模糊控制的智能控制方法。动态神经网络中基于模糊状态噪声驱动的扩展卡尔曼滤波器的学习已被开发出来,可以实时提供高度自适应和精确的神经控制。当使用基于反向传播的学习方案时,动态神经网络可能无法快速收敛。已有大量文献证明了基于扩展卡尔曼滤波器的学习方法的优越性,在该方法中,为了确保状态协方差矩阵的正定性而注入了人工噪声。但是,由于有限的精度,舍入误差和先验状态协方差的不确定性,滤波器可能会发散或收敛性会很差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号