首页> 外文会议>58th International Astronautical Congress 2007 >DYNAMIC MODELING AND EXPERIMENTAL VERIFICATION OF POINTING CONTROL TECHNOLOGY IN BALLOON-BORNE TELESCOPE SYSTEM FOR OPTICAL REMOTE SENSING OF PLANETS
【24h】

DYNAMIC MODELING AND EXPERIMENTAL VERIFICATION OF POINTING CONTROL TECHNOLOGY IN BALLOON-BORNE TELESCOPE SYSTEM FOR OPTICAL REMOTE SENSING OF PLANETS

机译:气球光学遥感球囊望远镜系统中点控制技术的动态建模与实验验证

获取原文

摘要

Tohoku University and National Institute of Polar Research are carrying out the project of the optical observation of Venus using a balloon-borne telescope. The pointing technology with only 0.1-arc-second precision to restrain the slight moving of image is being developed. In this paper, the dynamics model is defined, and the model parameters are determined by the experimental verification. By developing the numerical simulation tools, the motion in different structure and device configurations can be rapidly estimated. The astronomy observation by a stratosphere balloon has been being conducted, and it can reach the 30-km altitude. Compared to spacecrafts, they have the advantageous of cost. Because the balloon-bone telescopes do not experience the extreme environment, the commercial off-the-shelf laptop computers can be carried just as it is, and the devices can be collected after the finish of flight. The previous missions for Venus atmosphere are not sufficient. The high-speed west wind called super-rotation has been confirmed which reaches the 60 times speed as the Venus rotation. To solve this mechanism, the optical observation with high quality and resolution is necessary. In this project, the technical demonstration flight for about 10 hours is conducted in May 2007 at Sanriku Balloon Center (SBC) in Japan. Secondly, the long-term flight for several tens of days is planned in 2008 at Kiruna in Sweden. The target precision of control is defined as 0.1 arc seconds. A commercial off-the-shelf telescope with a 30-cm primary mirror and a camera are used. The target precision is similar as Subaru Telescope in Hawaii and Hubble Space Telescope (HST), and this high precision has not been achieved in previous balloon-borne telescopes. The pointing control is classified to three stages. Firstly, the solar panel is controlled to the solar direction in the precision of 0.1 degrees.
机译:东北大学和国立极地研究所正在执行使用气球式望远镜对金星进行光学观测的项目。正在开发仅具有0.1弧秒精度的指示技术,以限制图像的轻微移动。本文定义了动力学模型,并通过实验验证确定了模型参数。通过开发数值模拟工具,可以快速估计不同结构和设备配置中的运动。平流层气球进行了天文学观测,可以到达30公里的高度。与航天器相比,它们具有成本优势。由于气球骨式望远镜不会遇到极端环境,因此可以按原样携带商用的现成笔记本电脑,并且可以在飞行结束后收集设备。以前对金星大气层的任务还不够。已经确认了称为超旋转的高速西风,其速度是金星旋转的60倍。为了解决该机制,需要高质量和高分辨率的光学观察。在该项目中,2007年5月在日本三陆气球中心(SBC)进行了大约10个小时的技术演示飞行。其次,计划于2008年在瑞典基律纳(Kiruna)进行为期数十天的长期飞行。控制的目标精度定义为0.1弧秒。使用带有30厘米主镜和相机的商用现货望远镜。目标精度与夏威夷的斯巴鲁望远镜和哈勃太空望远镜(HST)相似,并且在以前的气球式望远镜中还没有达到这种高精度。指向控件分为三个阶段。首先,以0.1度的精度将太阳能电池板控制在太阳能方向上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号