首页> 外文会议>Annual IEEE/ACM International Symposium on Microarchitecture;IEEE/ACM International Symposium on Microarchitecture >A Floorplan-Aware Dynamic Inductive Noise Controller for Reliable Processor Design
【24h】

A Floorplan-Aware Dynamic Inductive Noise Controller for Reliable Processor Design

机译:用于可靠处理器设计的可识别平面图的动态感应噪声控制器

获取原文

摘要

Power delivery is a growing reliability concern in micropro- cessors as the industry moves toward feature-rich, power- hungrier designs. To battle the ever-aggravating power con- sumption, modern microprocessor designers or researchers propose and apply aggressive power-saving techniques in the form of clock-gating and/or power-gating in order to oper- ate the processor within a given power envelope. These tech- niques, however, often lead to high-frequency current varia- tions, which can stress the power delivery system and jeop- ardize reliability due to inductive noise (Lrac{{di}} {{dt}} ) in the power supply network. To counteract these issues, modern mi- croprocessors are designed to operate under the worst-case current assumption by deploying adequate decoupling capac- itance. With the trend of lower supply voltage and increased leakage power and current consumption, designing a proces- sor for the worst case is becoming less appealing. In this paper, we propose a new dynamic inductive-noise controlling mechanism at the microarchitectural level that will limit the on-die current demand within predefined bounds, regardless of the native power and current characteristics of running applications. By dynamically monitoring the access patterns of microarchitectural modules, our mechanism can effectively limit simultaneous switching activity of close-by modules, thereby leveling voltage ringing at local power-pins. Compared to prior art, our di/dt controller is the first that takes the processor's floorplan as well as its power-pin dis- tribution into account to provide a finer-grained control with minimal performance degradation. Based on the evaluation results using 2D floorplans, we show that our techniques can significantly improve inductive noise induced by current de- mand variation and reduce the average current variability by up to 7 times with an average performance overhead of 4.0%.
机译:随着业界朝着功能丰富,耗电大的设计方向发展,功率传输在微型处理器中日益引起人们对可靠性的关注。为了应对不断加剧的功耗,现代微处理器设计人员或研究人员提出并应用了时钟门控和/或功率门控形式的节能技术,以便在给定的功率范围内运行处理器。 。然而,这些技术通常会导致高频电流变化,这会给功率传输系统造成压力,并由于电感噪声(L \ frac {{di}} {{dt}})而危及可靠性。电源网络。为了解决这些问题,现代微处理器被设计为通过部署足够的去耦电容在最坏情况下的当前假设下运行。随着电源电压降低,泄漏功率和电流消耗增加的趋势,针对最坏情况设计处理器的吸引力越来越小。在本文中,我们提出了一种新的微体系结构动态电感噪声控制机制,该机制将管芯上的电流需求限制在预定义的范围内,而与正在运行的应用程序的本机功率和电流特性无关。通过动态监视微体系结构模块的访问模式,我们的机制可以有效地限制相邻模块的同时开关活动,从而均衡本地电源引脚上的电压振铃。与现有技术相比,我们的di / dt控制器是第一个将处理器的布局以及电源引脚分配考虑在内的控制器,以提供更细粒度的控制,同时性能下降最小。基于使用2D平面图的评估结果,我们表明,我们的技术可以显着改善由电流需求变化引起的感应噪声,并将平均电流变化率降低多达7倍,平均性能开销为4.0%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号