首页> 外文会议>International Conference on Greenhouse Gas Control Technologies >Hydromechanical aspects of CO2 breakthrough into clay-rich caprock
【24h】

Hydromechanical aspects of CO2 breakthrough into clay-rich caprock

机译:CO2突破进入富含粘土的气囊的流体力学方面

获取原文

摘要

Caprock formations are intended to prevent upwards carbon dioxide (CO2) migration to the surface during CO2 geological storage. Caprock interaction with CO2, as well as its potential consequences, requires to be predicted, and thus, need to be studied experimentally. Laboratory investigations of caprock behavior are complex due to its low permeability, and the scarcity of experimental studies involving high-pressure CO2 injection into caprock representatives puts this difficulty into manifest. In this study, we perform laboratory experiments in an oedometric cell on intact and remolded Opalinus clay (Jurassic shale), evaluating the breakthrough pressure and permeability for liquid and supercritical CO2. Intact and remolded shale specimens present intrinsic permeabilities of 10"21 m2 to 10"20 m2, respectively. Applied axial stress ranges from 27 MPa to 42 MPa and the pressure and temperature conditions are representative of a caprock at a depth of 800 m. We found that the microstructure of the caprock has a great effect on the material properties. The intrinsic permeability of a more tight material (intact Opalinus clay) is around two times lower than that of remolded shale, which has a more open microstructure. Additionally, the intact rock becomes 30 times less permeable to CO2 than the remolded shale, which implies that the CO2 relative permeability is 15 times smaller for intact rock than for remolded shale. On the other hand, CO2 breakthrough pressure for the tighter material is almost three times lower than for the more permeable remolded shale. Breakthrough pressure of the remolded shale ranges from 3.9 MPa to 5.0 MPa for liquid CO2 and from 2.8 MPa to 4.6 MPa for supercritical CO2. For the intact shale, breakthrough pressure is 0.9 MPa for liquid CO2 and 1.6 MPa for supercritical CO2. Thus, the breakthrough pressure cannot be correlated with the intrinsic permeability of the caprock.
机译:载体形成旨在在CO 2地质储存期间防止向上二氧化碳(CO2)迁移到表面。与二氧化碳的脚轮相互作用以及其潜在后果需要预测,因此需要通过实验研究。由于其低渗透性,载体行为的实验室调查是复杂的,并且涉及高压二氧化碳注射到脚轮代表的实验研究的稀缺程度将这种困难变为明显的。在这项研究中,我们在完整和重塑透明度(侏罗纪页岩)上的OEDometric细胞中进行实验室实验,评价液体和超临界CO 2的突破压力和渗透性。完整和再折叠的页岩样本分别存在10“21m 2至10”20m 2的内在渗透性。施加的轴向应力范围为27MPa至42MPa,压力和温度条件是载体的深度为800μm的载体。我们发现载体的微观结构对材料特性有很大影响。更紧密的材料(完整透明剂粘土)的内在渗透性约为比重形页岩低的两倍,其具有更开放的微观结构。另外,完整的岩石比重折叠的页岩透过的二氧化碳变得30倍,这意味着对于完整岩石的CO 2相对渗透率比对于重折叠的页岩,相对渗透率为15倍。另一方面,较小材料的CO2突破压力几乎比更换更可渗透的转换的页岩低三倍。再折叠页岩的突破压力为液体CO2的3.9MPa至5.0MPa,用于超临界CO2的2.8MPa至4.6MPa。对于完整的页岩,对于超临界CO 2的液体CO2和1.6MPa的突破压力为0.9MPa。因此,突出压力不能与载体的内在渗透性相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号