首页> 外文会议>International Conference on Greenhouse Gas Control Technologies >Achieving Supercritical Fluid CO2 Pressures Directly from Thermal Decomposition of Solid Sodium Bicarbonate
【24h】

Achieving Supercritical Fluid CO2 Pressures Directly from Thermal Decomposition of Solid Sodium Bicarbonate

机译:直接从固体碳酸氢钠的热分解实现超临界流体CO2压力

获取原文

摘要

Compressing carbon dioxide (CO2) to supercritical pipeline pressures is one of the major costs of carbon capture and storage. Many innovative approaches to decreasing this cost have been suggested, in many cases relying on high temperature regeneration schemes utilizing high enthalpy solvents. Solid sorbent systems have not generally been examined for high pressure regeneration. We have now quantified through experimental and modelling studies that it is possible to obtain CO2 pressures of 150 bars or more by thermal decomposition of solid sodium bicarbonate (nahcolite, NaHCO3). In a cyclic operations with CO2 withdrawal, our model of the process predicts a swing capacity of 5% (wt.) when withdrawing CO2 at 20 bars, and 2% when withdrawing CO2 at 80 bars (supercritical fluid). Precipitation of solid sodium bicarbonate ("scaling") has been observed previously when using sodium carbonate solutions in CO2 capture, and was considered an obstacle to the use of sodium carbonate as a capture solution due to potential mineral precipitation on the packing material. The ability to encapsulate the capture solvent overcomes the scaling problem and allows multiple benefits of the sodium carbonate capture solvent to realized [1]. In addition to high pressures of regeneration, these benefits include the low cost and benign nature of sodium carbonate, thermal stability with no thermal degradation, competitive carbon transfer mass when compared with amines, relatively low heat of solution of CO2 in the carbonate solvent, and potentially a reduced mass of water heated during regeneration. Using previous experimental data as well as our own measurements of CO2 pressures in equilibrium with carbonate solutions, we have developed a model of the phase behavior over a range of processing conditions of up to 210 °C and saturation with respect to nahcolite. Using these data to parametrize a Pitzer electrolyte model, we predicted that in the absence of water, nahcolite reaches supercritical CO2 pressures over the solid at about 125 °C. This encouraged us to pursue experimental determination with realistic amounts of water to allow for conversion of carbonate (CO32) to bicarbonate (HCO3~) as loading with CO2 takes place. High CO2 pressures shift to higher temperature as the carbonate/water ratio decreases. However, encapsulated carbonates allow the system to operate at very high carbonate/water ratios such that a solid phase is present throughout the capture process. Each capsule contains mainly a solid carbonate phase with a small mass of saturated solution. Engineering of the capsule material may allow us to control both CO2 loading and water content independently to maximize CO2 carrying capacity and minimize water content, saving process energy by heating only minimal water during regeneration.
机译:将二氧化碳(CO2)压缩为超临界管道压力是碳捕获和储存的主要成本之一。在许多案例中依赖于利用高焓溶剂的高温再生方案,提出了许多创新的降低方法。通常还没有检查固体吸附剂系统,用于高压再生。我们现在已经通过实验和建模研究量化,即通过固体碳酸氢钠(Nahcolite,NaHCO 3)的热分解,可以获得150巴或更多的CO 2压力。在具有二氧化碳撤离的循环操作中,我们的方法模型预测在20巴的CO 2处取出CO 2时的摆动容量为5%(wt。),并且在80巴(超临界流体)下取出CO2时2%。在使用CO 2捕获中使用碳酸钠溶液时,先前已经观察到固体碳酸氢钠(“缩放”)的沉淀,并且被认为是由于填充材料上的潜在矿物沉淀而被认为是碳酸钠作为捕获溶液的障碍。包封捕获溶剂的能力克服了缩放问题,允许碳酸钠捕获溶剂的多种益处实现[1]。除了再生的高压力外,这些益处还包括碳酸钠的低成本和良性性质,与胺相比,无热降解的热稳定性,竞争性碳转移质量,CO 2在碳酸盐溶剂中的溶液中的热量相对较低,可能在再生期间加热的含量减少。使用先前的实验数据以及我们在碳酸盐溶液的平衡中对CO2压力的自身测量,我们已经在高达210℃的加工条件和相对于Nahcolite饱和的一系列加工条件下开发了相位行为的模型。使用这些数据载体载体电解质模型,我们预测在没有水的情况下,Nahcolite在约125℃下在固体上达到超临界CO 2压力。这鼓励我们追求具有实际用水的实验测定,以便将碳酸盐(CO32)转化为碳酸氢盐(HCO3〜),因为用CO 2加载。随着碳酸盐/水比降低,高二氧化碳压力转移到更高的温度。然而,包封的碳酸盐允许系统在非常高的碳酸盐/水比下操作,使得整个捕获过程中存在固相。每个胶囊主要含有具有小质量饱和溶液的固体碳酸盐相。胶囊材料的工程可以使我们独立地控制CO 2负荷和水含量以使CO 2承载能力最大化并最小化水含量,通过仅在再生期间加热最小的水来节省工艺能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号