首页> 外文会议>Conference on physics of medical imaging >Geometry analysis of an inverse-geometry volumetric CT system with multiple detector arrays
【24h】

Geometry analysis of an inverse-geometry volumetric CT system with multiple detector arrays

机译:具有多个探测器阵列的反几何体CT系统的几何分析

获取原文

摘要

An inverse-geometry volumetric CT (IGCT) system for imaging in a single fast rotation without cone-beam artifacts is being developed. It employs a large scanned source array and a smaller detector array. For a single-source/single-detector implementation, the FOV is limited to a fraction of the source size. Here we explore options to increase the FOV without increasing the source size by using multiple detectors spaced apart laterally to increase the range of radial distances sampled. We also look at multiple source array systems for faster scans. To properly reconstruct the FOV, Radon space must be sufficiently covered and sampled in a uniform manner. Optimal placement of the detectors relative to the source was determined analytically given system constraints (5cm detector width, 25cm source width, 45cm source-to-isocenter distance). For a 1x3 system (three detectors per source) detector spacing (DS) was 18° and source-to-detector distances (SDD) were 113, 100 and 113cm to provide optimum Radon sampling and a FOV of 44cm. For multiple-source systems, maximum angular spacing between sources cannot exceed 125° since detectors corresponding to one source cannot be occluded by a second source. Therefore, for 2x3 and 3x3 systems using the above DS and SDD. optimum spacing between sources is 115° and 61° respectively, requiring minimum scan rotations of 115° and 107°. Also, a 3x3 system can be much faster for full 360° dataset scans than a 2x3 system (120° vs. 245°). We found that a significantly increased FOV can be achieved while maintaining uniform radial sampling as well as a substantial reduction in scan time using several different geometries. Further multi-parameter optimization is underway.
机译:正在开发一种用于在单个快速旋转中成像而无锥束伪影的逆几何体CT(IGCT)系统。它采用了较大的扫描源阵列和较小的检测器阵列。对于单源/单检测器实施,FOV被限制为源大小的一小部分。在这里,我们探讨了通过使用多个横向隔开的检测器来增加FOV而不增加源尺寸的选项,以增加采样的径向距离的范围。我们还将研究多个源阵列系统,以加快扫描速度。为了正确重建FOV,必须充分覆盖Radon空间并以统一的方式对其进行采样。在给定系统约束的条件下(5cm探测器宽度,25cm光源宽度,45cm的源到等中心距离),通过分析确定了探测器相对于光源的最佳位置。对于1x3系统(每个源三个探测器),探测器间距(DS)为18°,源到探测器的距离(SDD)为113、100和113cm,以提供最佳的Radon采样和44cm的FOV。对于多源系统,源之间的最大角度间隔不能超过125°,因为与一个源相对应的检测器不能被第二个源遮挡。因此,对于使用上述DS和SDD的2x3和3x3系统。源之间的最佳间距分别为115°和61°,要求最小扫描旋转为115°和107°。同样,对于完整的360°数据集扫描,3x3系统比2x3系统要快得多(120°与245°)。我们发现,使用几种不同的几何形状,可以在保持均匀的径向采样的同时显着提高FOV,同时还可以大幅减少扫描时间。进一步的多参数优化正在进行中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号