首页> 外文会议>North American Thermal Analysis Society Annual Conference >Interactions Between Cyclic and Linear Polyoxyethylenes in the Amorphous Phase
【24h】

Interactions Between Cyclic and Linear Polyoxyethylenes in the Amorphous Phase

机译:环状和线性聚氧乙烯在非晶相中的相互作用

获取原文

摘要

Spontaneous threading and the dynamics of the threaded species have been studied by simulation of two-component melts composed of monodisperse linear and cyclic polyoxyethylenes. The threaded species are homopolyrotaxanes, where the same monomer unit appears in the cyclic and linear components.. The intramolecular conformations of the coarsegrained polyoxyethylenes are controlled by the rotational isomeric model of Abe et al. for the unperturbed chain, with the added requirement of the maintenance of ring closure in the case of the cyclic species. The intermolecular interactions are controlled by a Lennard-Jones potential that has been discretized for use on the high coordination lattice employed in the simulation. The temperature of the simulation is 373 K, where the system is amorphous. The density of the system is 1.06 g/cm3. Analysis of the intramolecular pair correlation functions detects no tendency for demixing of the cyclic and linear species in the melt. The amount of spontaneous threading decreases rapidly when the number of monomer units in the cyclic species falls below 10. Spontaneous penetration of a single cyclic species by two distinct linear chains can be observed when the number of monomer units in the cyclic rises above 14. Therefore the size of the cyclic should be 14 monomer units for the optimal spontaneous formation of a classic homopolyrotaxane. The internal dynamics of the homopolyrotaxane was studied in order to distinguish between two hypothetical descriptions. Should the internal dynamics be described as the shuttling of a mobile cyclic species along a comparatively static linear species? Alternatively, is the internal dynamics better represented as the slithering of a mobile linear species through the constraint imposed by a comparatively static cyclic species? The second description more closely describes the systems studied in the simulation, where the linear species is treated in a manner appropriate for a very long, methyl terminated chain. Conceivably this description could be changed by using shorter linear chains with bulky end-caps. Acknowledgements. This work was supported by funds from NASA and NSF. Dr. Xu is now at the Department of Chemistry and Chemical Biology, Cornell University.
机译:通过模拟由单分散线性和环状聚氧乙烯组成的两组分熔体,研究了自发的穿线和带线物质的动力学。螺纹物质是均聚轮烷,其中相同的单体单元出现在环状和线性组分中。粗粒聚氧乙烯的分子内构象由Abe等人的旋转异构模型控制。对于未受干扰的链,在环状物质的情况下,还需要保持环的闭合性。分子间的相互作用受Lennard-Jones电位控制,该电位已离散化,可用于模拟中使用的高配位晶格。模拟温度为373 K,其中系统为非晶态。系统的密度为1.06 g / cm3。 分子内对相关函数的分析没有发现在熔体中环状和线性物种混合的趋势。当环状物种中的单体单元数量降至10以下时,自发穿线的数量迅速减少。当环状物种中的单体单元数量增加至14以上时,可以观察到两个环状直链对单个环状物种的自发渗透。因此环状分子的大小应为14个单体单元,以实现经典均聚轮烷的最佳自发形成。 为了区分两个假设描述,研究了均聚轮烷的内部动力学。内部动力学是否应描述为沿相对静态的线性物种对流动循环物种的穿梭运动?或者,通过相对静态的循环物种施加的约束,内部动力学是否可以更好地表示为移动线性物种的滑行?第二个描述更紧密地描述了在模拟中研究的系统,其中以适合于非常长的甲基封端链的方式处理线性物质。可以想象,可以通过使用带有较大端盖的较短线性链来更改此描述。 致谢。这项工作得到了NASA和NSF的资助。徐博士现就职于康奈尔大学化学与化学生物学系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号