首页> 外文会议>AIChE annual meeting >Predicting Properties of Energetic Materials via Molecular Modeling
【24h】

Predicting Properties of Energetic Materials via Molecular Modeling

机译:通过分子建模预测含能材料的性质

获取原文

摘要

The risk assessment of reactive chemicals or energetic materials is an important concern in the chemical and petrochemical industries and is a key area of research at the Mary Kay O?Connor Process Safety Center. This paper discusses applications of molecular modeling to obtain thermochemical data for reactive or hazardous materials and to predict calorimetric data based on molecular properties. Hydroxylamine (HA) is an example of a highly reactive and poorly characterized compound with important industrial applications. The heat of formation for gaseous hydroxylamine under standard conditions is calculated, using isodesmic reactions at several levels of theories, including HF, B3P86, B3LYP, MP2, MP3, MP4, CCSD(T), G2, G2MP2B3, G3B3, G3, and CBS-Q, and several basis sets, including Dunning correlation consistent and Pople-style. To gauge the computed HA values, the gaseous hydrogen peroxide heat of formation is calculated by the same methods and compared with experimental data. Based on our calculations we recommend an average value of -11.4 kcal/mol for the gaseous HA heat of formation at 1 atm and 298.17 K. The oxygen balance method, ASTM CHETAH, and the Calculated Adiabatic Reaction Temperature (CART) are a few of the theoretical methods that are commonly employed for reactive hazard evaluation. In an alternate approach, data obtained from calorimetric experiments and published kinetic parameters were correlated using calculated molecular properties. Quantitative structure-property relationships (QSPR) based on quantum calculations were employed to correlate calorimetrically measured onset temperatures and heats of reaction with molecular properties. The primary objective is to extend and complement available experimental data with predictions for the species where no or few experimental data exist.
机译:反应性化学物质或高能材料的风险评估是化学和石化工业中的重要问题,并且是玫琳凯·奥康纳过程安全中心研究的重点领域。本文讨论了分子建模在获取反应性或有害材料的热化学数据以及基于分子特性预测量热数据中的应用。羟胺(HA)是具有重要工业应用的高反应性和特性差的化合物的一个例子。使用等离子理论在多个理论水平上计算出气态羟胺在标准条件下的形成热,这些理论包括HF,B3P86,B3LYP,MP2,MP3,MP4,CCSD(T),G2,G2MP2B3,G3B3,G3和CBS -Q和几个基础集,包括Dunning相关性一致和Pople风格。为了测量计算出的HA值,采用相同的方法计算了气态过氧化氢的生成热,并与实验数据进行了比较。根据我们的计算,我们推荐在1个大气压和298.17 K下生成的气态HA的平均值为-11.4 kcal / mol。氧平衡法,ASTM CHETAH和计算绝热反应温度(CART)是反应性危害评估常用的理论方法。在另一种方法中,使用量热实验获得的数据和公布的动力学参数使用计算出的分子特性进行关联。使用基于量子计算的定量结构-性质关系(QSPR)将量热法测量的起始温度和反应热与分子性质相关联。主要目标是通过对不存在或仅有少量实验数据的物种的预测来扩展和补充可用的实验数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号