首页> 外文会议>American Society for Composites technical conference >A Micromechanical Viscoelastic Cohesive Layer Model for Predicting Delamination in High Temperature Polymer Matrix Composites
【24h】

A Micromechanical Viscoelastic Cohesive Layer Model for Predicting Delamination in High Temperature Polymer Matrix Composites

机译:一种微机械粘弹性粘性层模型,用于预测高温聚合物基质复合材料中分层

获取原文

摘要

In this paper, a novel numerical-experimental methodology is outlined to predict delamination in pristine as well as isothermally aged (in air) polymer matrix composites. A rate-dependent viscoelastic cohesive layer model was implemented in an in-house test-bed finite element analysis (FEA) code to simulate the delamination initiation and propagation in unidirectional polymer composites before and after aging. This unified model is fully rate-dependent and does not require a pre-assigned traction-separation law. The actual shape of traction separation law depends on: (a) the strain rate via the viscoelastic constitutive relationship, (b) the degree of thermo- oxidative aging via the changes in the experimentally measured creep compliance due to oxidation, and (c) the evolution of the internal state variable defining the state of damage. To determine the model parameters, double cantilever beam (DCB) experiments were conducted on both pristine and isothermally aged IM-7/bismaleimide (BMI) composite specimens. The J-Integral approach was adapted to extract cohesive stresses near the crack tip. A principal-stretch dependent internal damage state variable defines the damage in the cohesive layer. Within the cohesive layer, pristine and cohesive stresses were compared to estimate the damage parameters. Once the damage parameters had been characterized, the test-bed FEA code employed a micromechanics based viscoelastic cohesive layer model to simulate interlaminar delamination. From a numerical stability standpoint, the viscous regularization effect of the viscoelastic constitutive equations in the cohesive layer helps mitigate numerical instabilities caused by elastic energy released due to crack growth, thereby enabling the FEA model to simulate the load-deflection response of the composite structure well beyond peak load. The present cohesive-layer based FEA model was able to accurately predict not only the macro level load-displacement curve, but also the micro level crack growth history in IM-7/BMI laminate before and after thermal aging, using only three parameters.
机译:在本文中,一种新颖的数值-实验方法中概述来预测原始脱层以及等温老化(在空气中)的聚合物基复合材料。一种速率依赖性粘弹性粘合层模型是在一个内部测试床有限元分析(FEA)代码之前和老化之后,以模拟在单向聚合物复合材料的分层的萌生和扩展来实现。这种统一的模式是完全率相关,并不需要预先分配的牵引分离法。牵引分离法的实际形状取决于:(1)通过粘弹性本构关系应变率,(b)中的程度热氧化通过由于氧化的变化在实验测量的蠕变柔量,和(c)老化内部状态变量限定的损害的状态的演进。确定模型参数,双悬臂梁(DCB)实验是在两个原始和等温老化IM-7 /双马来酰亚胺(BMI)的复合试样进行。 J-积分方法被适用于提取裂纹尖端附近的内聚应力。一个主要拉伸依赖内部损伤状态变量定义的粘结层的损害。内粘合层,原始和凝聚力的应力进行比较,以估计所述损伤的参数。一旦损坏参数已被表征,所述试验台FEA代码采用基于粘弹性粘合层模型来模拟分层的层间一个微机械。从数值稳定性的角度来看,在粘合层的粘弹性构方程的粘性正规化效果有助于引起释放由于裂纹生​​长,从而使FEA模型来模拟所述复合结构的载荷 - 挠度曲线以及弹性能减轻数值不稳定性超出峰值负载。本发明粘合层基于FEA模型能够精确地预测不仅宏观层面载荷 - 位移曲线,而且在IM-7 / BMI层压前和热老化后的微裂纹水平成长历史,仅使用三个参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号