首页> 外文会议>Water-Rock Interaction >Interpreting kinetics of groundwater-mineral interaction using major element, trace element, and isotopic tracers
【24h】

Interpreting kinetics of groundwater-mineral interaction using major element, trace element, and isotopic tracers

机译:使用主要元素,微量元素和同位素示踪剂解释地下水与矿物相互作用的动力学

获取原文

摘要

To determine the residence time of groundwater, hydrologists use environmental tracers or numerical modelling. If mineral reactions within an aquifer could be used to determine the age of packets of water, such calculations would be extremely useful. Such calculations assume plug flow in the aquifer, and assume that laboratory mineral-water reaction kinetics are applicable in the field system. Application of such a model to an extraordinarily "simple" aquifer ― the Cape Cod aquifer in Massachusetts, USA ― reveals several puzzles related to interpretation of mineral reactivity. Despite a mineralogy consisting of more than 90% quartz and alkali feldspar, dissolution of quartz in the aquifer is not expected due to concentrations of Si higher than saturation with respect to quartz. However, flow rates inferred from Si gradients in the aquifer and alkali feldspar dissolution rates measured in the laboratory are too fast by a factor of about 50 as compared to observations and hydrologic models developed for the site. Furthermore, analysis of solute concentrations and Sr isotopes are consistent with only minor dissolution of alkali feldspar. In contrast, observed concentrations are consistent with dissolution of plagioclase (present at very low concentrations) and ion exchange between the aquifer fluid and accessory phases such as glauconite. This conclusion documents that chemistry of accessory minerals, when more reactive than the host minerals, can dominate groundwater solute compositions. While this observation is not necessarily unexpected, it emphasizes that further investigations of in situ reactions as tools for dating groundwater must rely upon thorough characterization of aquifer mineralogy combined with the use of major and trace element as well as isotopic analysis. Without such characterization, misinterpretation of reaction stoichiometries and kinetics in natural systems will be unavoidable.
机译:为了确定地下水的停留时间,水文学家使用环境示踪剂或数值模型。如果可以使用含水层中的矿物反应来确定水包的年龄,那么这种计算将非常有用。这样的计算假设含水层中有塞流,并且假设实验室矿泉水反应动力学适用于现场系统。将这种模型应用于非凡的“简单”含水层(美国马萨诸塞州的科德角含水层)后,发现了与解释矿物反应性有关的若干难题。尽管矿物学由超过90%的石英和长石组成,但由于Si的浓度高于相对于石英的饱和度,因此预计石英不会在含水层中溶解。然而,与现场观测和水文模型相比,从实验室中测得的含水层中的Si梯度和碱长石溶解速率推断出的流速太快了约50倍。此外,对溶质浓度和Sr同位素的分析仅与碱长石的少量溶解相一致。相反,观察到的浓度与斜长石溶解(以非常低的浓度存在)以及含水层流体和副相(如青石质)之间的离子交换相一致。该结论证明,辅助矿物质的化学反应性比主体矿物质的反应性高时,可以主导地下水的溶质成分。虽然这种观察不一定是出乎意料的,但它强调对作为地下水定年工具的原位反应的进一步研究必须依靠对含水层矿物学的全面表征,并结合使用主要和微量元素以及同位素分析。没有这样的表征,自然系统中不可避免地会误解反应的化学计量和动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号