首页> 外文会议>Plastics Bridging the Millennia >DETERMINATION OF OPTIMUM EXTRUSION PROCESSING CONDITIONS FOR MULTILAYER, LOW EMISSION PLASTIC FUEL LINE SYSTEMS USING DUAL CAPILLARY RHEOMETER TECHNIQUES
【24h】

DETERMINATION OF OPTIMUM EXTRUSION PROCESSING CONDITIONS FOR MULTILAYER, LOW EMISSION PLASTIC FUEL LINE SYSTEMS USING DUAL CAPILLARY RHEOMETER TECHNIQUES

机译:使用双毛细管流变仪技术确定多层,低排放塑料燃料管线系统的最佳挤出工艺条件

获取原文

摘要

Multilayer co-extrusion of plastics is fast becoming a very cost effective method of improving the barrier properties of plastic products. In this process individual polymers are melted and conveyed by separate extrusion systems, into a common distribution block and through a forming die where the polymer melts merge to form an integral multilayer structure. Many of these polymers do not form a mutual bond in the melt and so specially formulated tie layers have been developed in order to facilitate melt bonding and so prevent delamination. Multilayer polymer tube structures have recently been developed for use in automotive fuel lines. These multilayer structures are proving difficult to extrude because of their widely different temperature profiles required during extrusion, and the fact that all the melts enter a common die which can only be maintained at one particular temperature. The melt rheological characteristics of a range of commercially available barrier materials, polyvinylidene fluoride (PVDF), a terpolymer of vinylidene fluoride, tetrafluoroethylene and hexafluoropropylene (THV), plasticised Nylons and tie layer materials have been studied using Dual Capillary Rheometric techniques. The relative change in shear viscosity with temperature, up to 270°Cand shear rates up to 10~3 sec~(-1) have been investigated, for these materials, in order to determine optimum extrusion parameters during manufacture. The findings are confirmed by pilot plant tube extrusion trials using various multilayer structures. Arrhenius flow activation energies are also reported
机译:塑料的多层共挤出正迅速成为一种提高塑料产品的阻隔性能的非常经济有效的方法。在此过程中,单个聚合物通过独立的挤出系统熔融并输送到一个共用的分配模块中,并通过成型模头,在该模头中聚合物熔体融合形成一个整体的多层结构。这些聚合物中的许多在熔体中不形成相互键,因此已开发出特殊配方的粘结层,以促进熔体粘结并防止分层。最近已经开发出了用于汽车燃料管线中的多层聚合物管结构。事实证明,由于这些多层结构在挤出过程中所需的温度曲线相差很大,并且所有熔体进入一个只能保持在一个特定温度下的普通模头,因此很难挤出。已使用双毛细管流变技术研究了一系列市售阻隔材料,聚偏二氟乙烯(PVDF),偏二氟乙烯,四氟乙烯和六氟丙烯(THV)的三元共聚物,增塑尼龙和粘结层材料的熔体流变特性。为了确定制造过程中的最佳挤出参数,对这些材料研究了剪切粘度随温度(最高270°C)和剪切速率(最高10〜3 sec〜(-1))的相对变化。使用各种多层结构的中试植物管挤压试验证实了这一发现。阿累尼乌斯流动活化能也有报道

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号