首页> 外文会议>Italian conference on sensors and microsystems >REALISATION OF POLYSILICON MICROSTRUCTURES FOR ACCELEROMETERS AND GYROSCOPES
【24h】

REALISATION OF POLYSILICON MICROSTRUCTURES FOR ACCELEROMETERS AND GYROSCOPES

机译:加速器和陀螺仪的多晶硅微结构的实现

获取原文
获取外文期刊封面目录资料

摘要

Sensors are devices that provide an interface between electronic equipments and the physical world; they help electronics to "see", "hear", "smell", "taste" and "touch" In their interface with the real world, sensors, typically, convert non electrical physical or chemical quantities into electric signals (MEMS).To built MicroElectroMechanical System Silicon plays, as material, a dominant role. Its elastic and mechanical properties are comparable to those of steel and it is not subjected to mechanical hysteresis. In this work using a modified epitaxial technique, we were able to obtain the first prototypes of accelerometers and gyroscopes fully working. Using this technique developed in the Cornaredo R&D labs of SGS-Thomson, it is possible to grow, selectively and at the same time, a monocrystalline EPI layer for the active structures and a polycrystalline one for MEMS. At the end of the process, using "trench" like etches, it is possible to create the accesses for the sacrificial layer removal obtaining the mobile masses anchored to the bulk with elastic silicon suspensions for an acceleration sensors or gyroscopes.Such kind of technique allows to realise the sensing element in the same silicon chip as the control circuitry.In contrast to conventional surface micromachining, where structures present some drawbacks, caused by the limited thickness of the constructional layer (2μm), these epipoly microelectromechanical devices are countersunk in the epitaxial layer, yielding a highly planar structure, and are rather stiff in the vertical direction due to their large epipoly thickness (10μm). This lowers the probability of stiction of these devices to the underlying substrate. In addition the thicker layer leads to a relatively large value of both proof mass and readout capacitance (1pF). The whole characterisation is running; from the first data the lack of hysteresis is confirmed.
机译:传感器是在电子设备和物理世界之间提供接口的设备;它们帮助电子设备“看到”,“听到”,“闻到”,“品尝”和“触摸”。在与现实世界的界面中,传感器通常将非电的物理或化学量转换为电信号(MEMS)。 为了构建微机电系统,硅材料起着主导作用。它的弹性和机械性能可与钢媲美,并且不受机械滞后作用。在这项工作中,使用改进的外延技术,我们能够获得加速度计和陀螺仪完全正常工作的第一批原型。使用SGS-Thomson的Cornaredo研发实验室开发的这项技术,可以选择性地同时生长用于有源结构的单晶EPI层和用于MEMS的多晶层。在该过程结束时,使用类似“沟槽”的蚀刻,可以创建牺牲层去除通道,从而获得用于加速度传感器或陀螺仪的固定有弹性硅悬浮液的可移动块。 这种技术允许在与控制电路相同的硅芯片中实现传感元件。 与传统的表面微机械加工(由于结构层的厚度有限(2μm)而导致结构存在一些缺点)相比,这些Epipoly微机电装置在外延层中是沉孔的,从而产生了高度平面的结构,并且在垂直方向上相当坚硬由于它们的附加厚度(10μm)大,因此方向。这降低了这些器件被粘在下面的衬底上的可能性。另外,较厚的层导致相对较大的证明质量和读出电容(1pF)值​​。整个表征正在运行;从第一个数据可以确定没有滞后现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号