首页> 外文会议>European conference on earthquake engineering >Experimental substantiation of reinforcement philosophy regarding strengthening of walls of aseismic monolithic buildings
【24h】

Experimental substantiation of reinforcement philosophy regarding strengthening of walls of aseismic monolithic buildings

机译:关于抗震整体式建筑物墙体加固的加固原理的实验证实

获取原文

摘要

For the last 10 years the authors performed a range of investigations aimed at furtherdevelopment of calculation methods and designing of walls of monolithic buildings. Investigationsincluded analytical study of stress and strain state of the walls in question at high levels of complexvertical and horizontal loading, studies being based on finite element method in nonlinear formulation.Under the above loading conditions there have been tested more than 100 sections of monolithicbuildings. Also there were carried out full-scale vibration-survival tests of multi-storeymonolithic buildings as well as shock-resistance dynamic tests up to destruction (using a specialpurposehigh-powered shaker unit) of two constructed for that very purpose 6-storey sections ofmonolithic buildings.On the data of the above theoretical and experimental investigations there was developed a newin its principle calculation model for the walls of such buildings [1], and reasoned formulationswere given with regard to their design fundamentals.Below there are stated the basic results of experimental study of strength, deformation andcrack-resistance of wall sections of monolithic buildings under combined loading with single-stageand multi-cycle alternating static loads.Intensive development of frameless construction of reinforced concrete (often high-rise) buildingsin various seismic regions of the world at the end of this century has outrun and anticipated theprogress of corresponding research-and-development activities.Consequently, on designing such buildings one had to adhere to general classic design philosophyregarding reinforced concrete structures, which, as we know, was based chiefly on the resultsof one-dimensional elements analysis. This entailed negative consequences of both technical andeconomic nature.Trying, as far as possible, to fill up the named gap in this particular scientific research niche theauthors carried out a comprehensive cycle of static tests of large-scale (half size) one-storey wallpanels shown in fig. 1.Analysis of results obtained in the course of these experiments proved that plane reinforcement(set along the whole surface of planes) definitely increased shearing resistance (Q-u ) of panels andwhat’s more, in such case there was evidence of linear dependence between Q-u and plane reinforcementcoefficient m. It is of no little significance as well, that plane reinforcement ensures“mild” damage pattern of the walls, their plasticity index lying in the range of 6.8-8.1. The most effectiveproved to be plane reinforcement by using diagonal frames.Differentiated estimation of plane reinforcement horizontal and vertical rods’ effectiveness allowedus to come to the conclusion that for panels with β=1 / h>1 (where “l” is the length and “h” isthe height of a panel) preference shall be given to vertical rods as being more effective.The best part of investigations was oriented towards revealing the pattern of contour verticalreinforcement behavior under loads. It is worth mentioning here that various investigators pass opposingopinions on the subject in question.Tests carried out by the authors as well as corresponding theoretical studies convincingly prove.
机译:在过去的十年中,作者进行了一系列调查,旨在进一步 整体建筑的计算方法和墙的设计的发展。调查 包括在高复杂度的情况下所讨论的墙的应力和应变状态的分析研究 垂直和水平荷载,非线性有限元研究是基于有限元方法的。 在上述加载条件下,已经测试了100多个整体块 建筑物。还进行了多层的全尺寸振动生存测试 整体建筑以及抗震动态测试,直至破坏(使用特殊用途) 高功率振动筛单元),其中两个是为此目的专门建造的6层楼 整体建筑。 根据上述理论和实验研究的数据,开发了一种新的 此类建筑物的墙壁的原理计算模型[1]及其合理的公式 给出了有关其设计基础的信息。 下面列出了强度,变形和变形实验研究的基本结果。 单阶段联合荷载作用下整体建筑物墙体的抗裂性能 和多周期交变静载荷。 大力发展钢筋混凝土(通常是高层)建筑的无框架结构 在本世纪末,世界各个地震地区的地震都超出了人们的预期, 相应的研发活动的进度。 因此,在设计此类建筑物时,必须遵循一般的经典设计理念 关于钢筋混凝土结构,据我们所知,其主要依据是结果 一维元素分析。这带来了技术和技术方面的消极后果。 经济性质。 尽力填补这一特定科研领域的命名空白。 作者对大型(半尺寸)一层墙进行了全面的静态测试循环 图中显示的面板。 1。 在这些实验过程中获得的结果分析证明,平面加固 (沿平面的整个表面设置)肯定会增加面板的抗剪强度(Q-u), 更重要的是,在这种情况下,有证据表明Q-u与平面钢筋之间存在线性相关性 系数m同样重要的是,平面加固可以确保 墙壁的“轻度”损坏模式,其可塑性指数在6.8-8.1的范围内。最有效 通过使用对角框架证明是平面加固。 允许对平面钢筋水平和垂直杆的有效性进行差异估计 我们得出的结论是,对于β= 1 / h> 1的面板(其中“ l”是长度,而“ h”是 板的高度)应优先选用垂直杆,因为这样更有效。 研究的最佳部分是针对揭示轮廓垂直方向的模式 载荷作用下的钢筋性能。在这里值得一提的是,各种调查员经过了反对 对有关问题的意见。 作者进行的测试以及相应的理论研究令人信服地证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号