首页> 外文会议>Riso international symposium on materials science >LARGE SCALE FINITE ELEMENT SIMULATIONS OF POLYCRYSTALLINE AGGREGATES: APPLICATIONS TO X-RAY DIFFRACTION AND IMAGING FOR FATIGUE METAL BEHAVIOUR
【24h】

LARGE SCALE FINITE ELEMENT SIMULATIONS OF POLYCRYSTALLINE AGGREGATES: APPLICATIONS TO X-RAY DIFFRACTION AND IMAGING FOR FATIGUE METAL BEHAVIOUR

机译:多晶聚集体的大规模有限元模拟:应用于X射线衍射和疲劳金属行为的成像

获取原文

摘要

Large scale finite element simulations of the elastoviscoplastic behaviour of polycrystalline aggregates have become a standard technique to study the stress-strain heterogeneities that develop in grains during deformation. For a long time, comparison between continuum crystal plasticity and experimental field measurements was confined to the observation of surface behaviour. As for example the study of the development of intense deformation bands at the free surface of a polycrystal. Recent 3D experimental techniques open new perspectives in computational crystal plasticity. After reviewing how to define a representative volume element for polycrystal properties and showing that actual 3D computations, including grain shapes and orientations, are really needed to accurately determine the stress and strains distributions, two examples of applications of large scale simulations are described in this paper. First the simulation of 3D coherent X-ray diffraction in a polycrystalline gold sample is detailed. Based on the real geometry of the grains and their columnar nature, a 3D avatar is reconstructed. FE computations are then carried out to evaluate the effect of mechanical and thermal strain of the diffraction pattern resolved in the reciprocal space by complex FFT. Qualitative comparison with the experimental diffraction patterns shows that such computations can help understand the true nature of strain heterogeneities within the material. The second example of application deals with short fatigue crack propagation in polycrys-tals. One fundamental problem caused by short fatigue cracks is that despite decades of research, so far no reliable prediction of the crack propagation rates, comparable to the well-known Paris law in the long crack regime, could be established. This "anomalous"
机译:多晶聚集体的弹性粒子塑料行为的大规模有限元模拟已成为研究变形期间晶粒中显影的应力 - 应变异质性的标准技术。长期以来,连续晶体可塑性和实验场测量之间的比较仅限于对表面行为的观察。例如,研究多晶的自由表面处的强烈变形带的发展。最近的3D实验技术在计算晶体可塑性中打开新的视角。在审查如何定义多晶特性的代表性体积元素之后,并表明真正需要准确地确定应力和菌株的实际3D计算,包括晶粒形状和方向,在本文中描述了大规模模拟的两个应用示例。首先,详细介绍了多晶金样品中的3D相干X射线衍射的模拟。基于谷物的真实几何形状及其柱状性质,重建了3D化身。然后进行FE计算以评估通过复合FFT在往复空间中分解的衍射图案的机械和热应变的效果。与实验衍射图案的定性比较表明,这种计算可以有助于了解材料内应变异质性的真实性质。应用的第二个例子涉及多触发中的短疲劳裂纹传播。短疲劳裂缝引起的一个根本问题是,尽管有数十年的研究,但到目前为止无法确定与长裂缝制度中的众所周知的巴黎法律相当的裂缝传播速率。这个“异常”

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号